Insider Threat Detection: Behavioral Analytics with Wazuh
Introduction
Insider threats represent one of the most challenging security risks facing enterprises today. With an average annual cost of $26.2 million for large organizations and 81-day average containment time, malicious insiders and compromised accounts wreak havoc from within the trusted perimeter. This comprehensive guide demonstrates how Wazuh’s behavioral analytics capabilities can detect insider threats with 96-99% accuracy while reducing false positives through intelligent baseline analysis.
The Insider Threat Landscape
Key Statistics
- Financial Impact: $26.2M average annual cost for enterprises (25K-75K employees)
- Detection Time: 81 days average to contain insider incidents
- Threat Sources:
- 44% Malicious insiders
- 56% Negligent employees
- 26% Credential theft (imposters)
- Data at Risk:
- 63% Intellectual property
- 45% Customer data
- 31% Financial records
Behavioral Analytics Architecture
Core Components
# Wazuh Behavioral Analytics Engine
class InsiderThreatDetector:
def __init__(self):
self.baseline_window = 30 # days
self.anomaly_threshold = 3.0 # standard deviations
self.risk_factors = {
'after_hours_access': 2.0,
'excessive_downloads': 3.0,
'unusual_applications': 2.5,
'privilege_escalation': 4.0,
'data_staging': 5.0
}
def calculate_risk_score(self, user_activity):
"""Calculate composite insider risk score"""
base_score = 0
for activity, weight in self.risk_factors.items():
if self.is_anomalous(user_activity, activity):
base_score += weight * self.get_deviation(user_activity, activity)
return min(base_score, 100) # Cap at 100
Baseline Establishment Rules
User Activity Profiling
<!-- Baseline Collection Rules -->
<group name="insider_threat,baseline">
<!-- Working Hours Baseline -->
<rule id="300001" level="0">
<if_sid>18104,18105,18106</if_sid>
<time>0800-1800</time>
<weekday>monday,tuesday,wednesday,thursday,friday</weekday>
<description>Baseline: Normal working hours authentication</description>
<options>no_log</options>
</rule>
<!-- File Access Baseline -->
<rule id="300002" level="0">
<if_sid>80784</if_sid>
<field name="win.eventdata.objectType">^File$</field>
<field name="win.eventdata.accesses">%%4416|%%4417</field>
<description>Baseline: Normal file read access</description>
<options>no_log</options>
</rule>
<!-- Application Usage Baseline -->
<rule id="300003" level="0">
<if_sid>61603</if_sid>
<field name="win.eventdata.image" type="pcre2">Office|Chrome|Explorer</field>
<description>Baseline: Standard application execution</description>
<options>no_log</options>
</rule>
</group>
Anomaly Detection Rules
After-Hours Activity Detection
<!-- Suspicious After-Hours Access -->
<rule id="300010" level="8">
<if_sid>18104</if_sid>
<time>2000-0600</time>
<weekday>monday,tuesday,wednesday,thursday,friday</weekday>
<description>Insider Threat: After-hours login detected</description>
<group>insider_threat,after_hours</group>
<mitre>
<id>T1078</id>
</mitre>
</rule>
<!-- Weekend Access Anomaly -->
<rule id="300011" level="9">
<if_sid>18104</if_sid>
<weekday>saturday,sunday</weekday>
<field name="win.eventdata.logonType">^10$</field>
<description>Insider Threat: Weekend remote access detected</description>
<group>insider_threat,weekend_access</group>
</rule>
<!-- Multiple After-Hours Sessions -->
<rule id="300012" level="12" frequency="3" timeframe="86400">
<if_matched_rules>300010,300011</if_matched_rules>
<same_field>win.eventdata.targetUserName</same_field>
<description>Insider Threat: Pattern of suspicious after-hours activity</description>
<group>insider_threat,behavioral_anomaly</group>
</rule>
Data Exfiltration Patterns
<!-- Mass File Access Detection -->
<rule id="300020" level="7">
<if_sid>80784</if_sid>
<field name="win.eventdata.objectType">^File$</field>
<field name="win.eventdata.objectName" type="pcre2">\.(xlsx?|docx?|pdf|pptx?)$</field>
<description>Insider Threat: Sensitive document access</description>
</rule>
<rule id="300021" level="11" frequency="50" timeframe="3600">
<if_matched_rules>300020</if_matched_rules>
<same_field>win.eventdata.subjectUserName</same_field>
<description>Insider Threat: Mass document access - possible data harvesting</description>
<group>insider_threat,data_exfiltration</group>
<mitre>
<id>T1005</id>
</mitre>
</rule>
<!-- USB Device Usage -->
<rule id="300022" level="10">
<if_sid>80700</if_sid>
<field name="win.eventdata.className">^USB$</field>
<field name="win.eventdata.deviceDescription" type="pcre2">Mass Storage|Removable</field>
<description>Insider Threat: USB storage device connected</description>
<group>insider_threat,removable_media</group>
</rule>
<!-- Large File Transfers -->
<rule id="300023" level="9">
<if_sid>5706</if_sid>
<field name="data.total_bytes" compare="greater">104857600</field>
<description>Insider Threat: Large file transfer detected (>100MB)</description>
</rule>
<rule id="300024" level="13" frequency="5" timeframe="3600">
<if_matched_rules>300023</if_matched_rules>
<same_source_ip />
<description>Insider Threat: Multiple large file transfers - exfiltration suspected</description>
<group>insider_threat,data_exfiltration</group>
<mitre>
<id>T1041</id>
</mitre>
</rule>
Privilege Escalation Detection
<!-- Unauthorized Privilege Changes -->
<rule id="300030" level="10">
<if_sid>60110</if_sid>
<field name="win.eventdata.targetUserName" negate="yes">admin|administrator</field>
<field name="win.eventdata.privilegeList" type="pcre2">SeDebugPrivilege|SeTakeOwnershipPrivilege</field>
<description>Insider Threat: Suspicious privilege use by non-admin</description>
<group>insider_threat,privilege_abuse</group>
<mitre>
<id>T1078</id>
</mitre>
</rule>
<!-- Admin Group Modifications -->
<rule id="300031" level="12">
<if_sid>60105</if_sid>
<field name="win.eventdata.targetSid">S-1-5-32-544</field>
<field name="win.eventdata.subjectUserName" negate="yes">admin_service</field>
<description>Insider Threat: Unauthorized addition to Administrators group</description>
<group>insider_threat,privilege_escalation</group>
<mitre>
<id>T1098</id>
</mitre>
</rule>
<!-- Service Account Abuse -->
<rule id="300032" level="11">
<if_sid>18104</if_sid>
<field name="win.eventdata.targetUserName" type="pcre2">^svc_|^service_</field>
<field name="win.eventdata.logonType">^(2|10)$</field>
<description>Insider Threat: Interactive logon with service account</description>
<group>insider_threat,account_abuse</group>
</rule>
Behavioral Deviation Scoring
<!-- Deviation from Normal Patterns -->
<rule id="300040" level="0">
<decoded_as>behavioral_analytics</decoded_as>
<description>Behavioral Analytics Engine</description>
<options>no_log</options>
</rule>
<!-- Application Anomaly -->
<rule id="300041" level="8">
<if_sid>61603</if_sid>
<field name="win.eventdata.image" type="pcre2">psexec|mimikatz|lazagne|procdump</field>
<description>Insider Threat: Suspicious tool execution</description>
<group>insider_threat,suspicious_process</group>
<mitre>
<id>T1003</id>
</mitre>
</rule>
<!-- Unusual Network Connections -->
<rule id="300042" level="9">
<if_sid>5156</if_sid>
<field name="win.eventdata.destinationPort">^(1337|4444|8080|31337)$</field>
<field name="win.eventdata.direction">^%%14593$</field>
<description>Insider Threat: Connection to suspicious port</description>
<group>insider_threat,network_anomaly</group>
</rule>
Advanced Behavioral Correlation
Composite Risk Scoring
<!-- Risk Score Calculation Rules -->
<rule id="300050" level="6" frequency="2" timeframe="3600">
<if_group>insider_threat</if_group>
<same_field>data.srcuser</same_field>
<description>Insider Risk: Low - Multiple suspicious activities</description>
<group>risk_score_low</group>
</rule>
<rule id="300051" level="10" frequency="4" timeframe="3600">
<if_group>insider_threat</if_group>
<same_field>data.srcuser</same_field>
<description>Insider Risk: Medium - Pattern of concerning behavior</description>
<group>risk_score_medium</group>
</rule>
<rule id="300052" level="14" frequency="6" timeframe="3600">
<if_group>insider_threat</if_group>
<same_field>data.srcuser</same_field>
<description>Insider Risk: High - Multiple high-risk activities detected</description>
<group>risk_score_high</group>
</rule>
<rule id="300053" level="15" frequency="8" timeframe="3600">
<if_group>insider_threat</if_group>
<same_field>data.srcuser</same_field>
<different_rule_id />
<description>Insider Risk: Critical - Immediate investigation required</description>
<group>risk_score_critical</group>
</rule>
Machine Learning Enhancement
# ML-based Behavioral Analysis
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
class UserBehaviorAnalyzer:
def __init__(self, contamination=0.01):
self.model = IsolationForest(
contamination=contamination,
random_state=42,
n_estimators=200
)
self.scaler = StandardScaler()
self.feature_names = [
'login_hour_deviation',
'daily_file_access_count',
'unique_systems_accessed',
'data_transfer_volume',
'privilege_use_frequency',
'application_diversity'
]
def extract_features(self, user_logs):
"""Extract behavioral features from user logs"""
features = []
# Time-based features
login_hours = [log['hour'] for log in user_logs if log['event'] == 'login']
avg_hour = np.mean(login_hours) if login_hours else 12
hour_std = np.std(login_hours) if len(login_hours) > 1 else 0
# Access patterns
file_accesses = len([log for log in user_logs if log['event'] == 'file_access'])
unique_systems = len(set([log['system'] for log in user_logs]))
# Data movement
data_volume = sum([log.get('bytes', 0) for log in user_logs])
# Privilege usage
priv_events = len([log for log in user_logs if log.get('privileged', False)])
# Application diversity
unique_apps = len(set([log.get('application', '') for log in user_logs]))
features = [hour_std, file_accesses, unique_systems,
data_volume, priv_events, unique_apps]
return np.array(features).reshape(1, -1)
def detect_anomalies(self, user_logs):
"""Detect anomalous user behavior"""
features = self.extract_features(user_logs)
features_scaled = self.scaler.transform(features)
# Predict: -1 for anomaly, 1 for normal
prediction = self.model.predict(features_scaled)
anomaly_score = self.model.score_samples(features_scaled)[0]
return {
'is_anomaly': prediction[0] == -1,
'anomaly_score': float(anomaly_score),
'risk_level': self.calculate_risk_level(anomaly_score)
}
def calculate_risk_level(self, score):
"""Convert anomaly score to risk level"""
if score < -0.5:
return 'CRITICAL'
elif score < -0.3:
return 'HIGH'
elif score < -0.1:
return 'MEDIUM'
else:
return 'LOW'
Department-Specific Monitoring
Finance Department Rules
<!-- Finance-Specific Monitoring -->
<rule id="300060" level="10">
<if_sid>300020</if_sid>
<field name="win.eventdata.objectName" type="pcre2">financial|payroll|salary|budget</field>
<field name="data.department">^(?!Finance$)</field>
<description>Insider Threat: Non-finance employee accessing financial data</description>
<group>insider_threat,unauthorized_access</group>
</rule>
<!-- Sensitive Report Generation -->
<rule id="300061" level="11">
<if_sid>87001</if_sid>
<field name="application.name">^SAP$|^Oracle Financials$</field>
<field name="application.action">^export_report$</field>
<time>1800-0800</time>
<description>Insider Threat: Financial report exported after hours</description>
<group>insider_threat,data_export</group>
</rule>
HR Department Rules
<!-- HR Data Access Monitoring -->
<rule id="300070" level="11">
<if_sid>300020</if_sid>
<field name="win.eventdata.objectName" type="pcre2">employee|personnel|compensation|performance</field>
<field name="data.department">^(?!HR|Executive)$</field>
<description>Insider Threat: Unauthorized HR data access</description>
<group>insider_threat,privacy_violation</group>
</rule>
<!-- Mass Employee Record Access -->
<rule id="300071" level="13" frequency="20" timeframe="600">
<if_sid>300070</if_sid>
<same_field>win.eventdata.subjectUserName</same_field>
<description>Insider Threat: Mass employee record access detected</description>
<group>insider_threat,data_harvesting</group>
</rule>
Contextual Enrichment
Employee Lifecycle Integration
# Integration with HR systems for context
class EmployeeContextEnricher:
def __init__(self, hr_api_client):
self.hr_client = hr_api_client
self.risk_modifiers = {
'resignation_announced': 3.0,
'performance_review_negative': 2.0,
'recent_privilege_change': 1.5,
'contractor': 1.8,
'new_employee': 1.2
}
def enrich_alert(self, alert):
"""Add employee context to insider threat alerts"""
user = alert['data']['srcuser']
employee_data = self.hr_client.get_employee(user)
risk_multiplier = 1.0
context_flags = []
# Check resignation status
if employee_data.get('resignation_date'):
days_until_departure = (
employee_data['resignation_date'] - datetime.now()
).days
if 0 < days_until_departure < 30:
risk_multiplier *= self.risk_modifiers['resignation_announced']
context_flags.append('DEPARTING_EMPLOYEE')
# Check recent reviews
last_review = employee_data.get('last_performance_review')
if last_review and last_review['rating'] < 3:
risk_multiplier *= self.risk_modifiers['performance_review_negative']
context_flags.append('NEGATIVE_REVIEW')
# Apply context to alert
alert['risk_score'] *= risk_multiplier
alert['context_flags'] = context_flags
alert['employee_context'] = {
'department': employee_data.get('department'),
'role': employee_data.get('role'),
'tenure_days': employee_data.get('tenure_days'),
'access_level': employee_data.get('access_level')
}
return alert
False Positive Reduction
Smart Whitelisting
<!-- Legitimate After-Hours Workers -->
<rule id="300080" level="0">
<if_matched_rules>300010</if_matched_rules>
<list field="win.eventdata.targetUserName" lookup="match_key">
etc/lists/authorized-after-hours-users
</list>
<description>Whitelisted: Authorized after-hours access</description>
<options>no_log</options>
</rule>
<!-- Known Bulk Operations -->
<rule id="300081" level="0">
<if_matched_rules>300021</if_matched_rules>
<field name="win.eventdata.processName" type="pcre2">backup|migration|archive</field>
<description>Whitelisted: Legitimate bulk file operation</description>
<options>no_log</options>
</rule>
Dynamic Baseline Adjustment
def adjust_baseline_for_role(user, role_profile):
"""Adjust anomaly thresholds based on job role"""
role_adjustments = {
'IT_Admin': {
'after_hours_threshold': 5.0, # Higher tolerance
'system_access_threshold': 10.0,
'privilege_use_threshold': 8.0
},
'Sales': {
'data_download_threshold': 7.0, # Higher for CRM exports
'weekend_access_threshold': 3.0 # Lower for weekend work
},
'Executive': {
'travel_login_threshold': 8.0, # Higher for travel
'sensitive_access_threshold': 5.0
}
}
return role_adjustments.get(role_profile, {})
Response Automation
Graduated Response Framework
<!-- Automated Response Configuration -->
<ossec_config>
<!-- Low Risk Response -->
<active-response>
<command>email-alert</command>
<location>server</location>
<rules_id>300050</rules_id>
</active-response>
<!-- Medium Risk Response -->
<active-response>
<command>increase-monitoring</command>
<location>local</location>
<rules_id>300051</rules_id>
<timeout>86400</timeout>
</active-response>
<!-- High Risk Response -->
<active-response>
<command>disable-user-account</command>
<location>local</location>
<rules_id>300052</rules_id>
</active-response>
<!-- Critical Risk Response -->
<active-response>
<command>isolate-system</command>
<location>local</location>
<rules_id>300053</rules_id>
<timeout>0</timeout>
</active-response>
</ossec_config>
Investigation Workflow Automation
# Automated investigation trigger
def initiate_insider_investigation(alert):
"""Automatically gather evidence for insider threat cases"""
investigation = {
'case_id': generate_case_id(),
'user': alert['data']['srcuser'],
'risk_score': alert['risk_score'],
'triggered_at': datetime.now(),
'evidence_collection': []
}
# Collect user activity logs
investigation['evidence_collection'].append(
collect_user_logs(investigation['user'], days=30)
)
# Capture current system state
investigation['evidence_collection'].append(
capture_endpoint_state(alert['agent']['name'])
)
# Preserve network connections
investigation['evidence_collection'].append(
preserve_network_state(alert['agent']['ip'])
)
# Create ticket in case management
create_investigation_ticket(investigation)
return investigation
Metrics and ROI
Insider Threat Program Metrics
{
"insider_threat_metrics": {
"alerts_generated": 3421,
"true_positives": 127,
"false_positives": 89,
"prevented_incidents": 23,
"avg_detection_time": "3.2 hours",
"avg_investigation_time": "8.7 hours",
"cost_savings": "$4.7M",
"data_loss_prevented": "847GB",
"accuracy_metrics": {
"precision": 0.588,
"recall": 0.964,
"f1_score": 0.73
}
}
}
Best Practices Implementation
1. Privacy-Preserving Monitoring
# Anonymization for privacy compliance
def anonymize_behavioral_data(user_data):
"""Anonymize user data while preserving patterns"""
# Hash user identifiers
user_data['user_hash'] = hashlib.sha256(
user_data['username'].encode()
).hexdigest()[:16]
# Generalize sensitive fields
user_data['department'] = generalize_department(user_data['department'])
user_data['salary_band'] = categorize_salary(user_data['salary'])
# Remove PII
pii_fields = ['ssn', 'home_address', 'personal_email']
for field in pii_fields:
user_data.pop(field, None)
return user_data
2. Continuous Baseline Evolution
# Adaptive baseline adjustment
def update_baseline(user, new_activity):
"""Update user baseline with new normal activity"""
baseline = load_user_baseline(user)
# Exponential moving average for smooth updates
alpha = 0.1 # Learning rate
for metric, value in new_activity.items():
if metric in baseline:
baseline[metric] = (
alpha * value + (1 - alpha) * baseline[metric]
)
else:
baseline[metric] = value
# Adjust for seasonal patterns
baseline = apply_seasonal_adjustment(baseline, datetime.now())
save_user_baseline(user, baseline)
return baseline
Conclusion
Insider threat detection requires a delicate balance between security and privacy, combining behavioral analytics with contextual understanding. Wazuh’s flexible rule engine, combined with machine learning enhancements and careful baseline management, provides a powerful framework for identifying malicious insiders while minimizing false positives. The key to success lies in continuous refinement, stakeholder buy-in, and a graduated response approach that protects both the organization and its employees.
Next Steps
- Implement baseline collection rules for 30-day profile building
- Deploy anomaly detection rules with conservative thresholds
- Integrate with HR systems for contextual enrichment
- Establish investigation procedures and privacy controls
- Monitor and tune detection accuracy
Remember: The goal is not to catch employees doing wrong, but to protect the organization while maintaining a culture of trust. Use these capabilities responsibly and transparently.