Skip to content

Cross-Platform Rust-Based SIEM Platform Implementation Plan

Published: at 01:59 AM

Table of contents

Open Table of contents

🎯 Executive Summary

This plan outlines the development and deployment of a next-generation Security Information and Event Management (SIEM) platform built on Rust-based technologies. The solution provides unified threat detection, incident response, and forensic analysis capabilities across heterogeneous environments while maintaining security-by-design principles.

Key Differentiators:

πŸ—οΈ Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        Rust-Based SIEM Core Platform                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚   uSIEM     β”‚  β”‚   Vector    β”‚  β”‚ OpenObserve β”‚  β”‚  Quickwit   β”‚       β”‚
β”‚  β”‚(Detection)  β”‚  β”‚(Pipeline)   β”‚  β”‚(Analytics)  β”‚  β”‚(Search)     β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                      β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚                 β”‚                 β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚     Linux       β”‚ β”‚     macOS       β”‚ β”‚    Windows      β”‚
         β”‚  Rust Agent     β”‚ β”‚  Swift Agent    β”‚ β”‚ C#/.NET Agent   β”‚
         β”‚                 β”‚ β”‚                 β”‚ β”‚                 β”‚
         β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
         β”‚ β”‚ eBPF/sysdig β”‚ β”‚ β”‚ β”‚EndpointSec  β”‚ β”‚ β”‚ β”‚   ETW/WMI   β”‚ β”‚
         β”‚ β”‚ Monitoring  β”‚ β”‚ β”‚ β”‚ Framework   β”‚ β”‚ β”‚ β”‚ Monitoring  β”‚ β”‚
         β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ› οΈ Core Technology Stack

Central SIEM Platform (Rust)

ComponentTechnologyPurposeKey Features
Detection EngineuSIEMCore SIEM frameworkSIGMA rules, custom logic, MITRE ATT&CK mapping
Data PipelineVectorLog processing100k+ EPS throughput, transformation, routing
Search EngineQuickwitForensic analysisSub-second search on cloud storage
ObservabilityOpenObserveReal-time monitoringLogs, metrics, traces, 140x cost reduction
Windows AnalysisHayabusa + ChainsawWindows forensics2500+ SIGMA rules, EVTX parsing
Network SecuritySuricata (Rust components)Network monitoringIDS/IPS with Rust protocol parsers

Endpoint Agents by Platform

🐧 Linux Agent (Rust)

[dependencies]
tokio = "1.0"
libbpf-rs = "0.21"
redbpf = "2.3"
inotify = "0.10"
procfs = "0.15"
nix = "0.27"
serde = "1.0"

Monitoring Capabilities:

🍎 macOS Agent (Swift)

import EndpointSecurity
import OSLog
import Network
import CryptoKit

Monitoring Capabilities:

πŸͺŸ Windows Agent (C#/.NET)

using System.Diagnostics.Eventing.Reader;
using System.Management;
using Microsoft.Diagnostics.Tracing;
using Microsoft.Win32;

Monitoring Capabilities:

πŸ“‹ Implementation Phases

Phase 1: Foundation (Months 1-3)

Week 1-4: Core Infrastructure

Week 5-8: Linux Agent Development

Week 9-12: SIGMA Rules Engine

Phase 2: Cross-Platform Expansion (Months 4-6)

Week 13-16: Windows Integration

Week 17-20: macOS Agent Development

Week 21-24: Search and Analytics

Phase 3: Advanced Features (Months 7-9)

Week 25-28: Network Security

Week 29-32: Machine Learning & Analytics

Week 33-36: UI/UX and Reporting

Phase 4: Production Deployment (Months 10-12)

Week 37-40: Testing and Hardening

Week 41-44: Deployment and Migration

Week 45-48: Optimization and Monitoring

πŸ”§ Technical Implementation Details

Deployment Architecture

# docker-compose.production.yml
version: "3.8"
services:
  # Core SIEM Services
  rust-siem-cluster:
    image: rust-siem:latest
    deploy:
      replicas: 3
      resources:
        limits:
          cpus: "2"
          memory: 4G
    environment:
      - RUST_LOG=info
      - CLUSTER_MODE=true
      - NODE_ID={{ .Task.Slot }}

  # Data Pipeline
  vector-cluster:
    image: timberio/vector:latest
    deploy:
      replicas: 2
    volumes:
      - /var/log:/var/log:ro

  # Search and Analytics
  quickwit-cluster:
    image: quickwit/quickwit:latest
    deploy:
      replicas: 3
    environment:
      - QW_CLUSTER_ID=production
      - QW_NODE_ID={{ .Task.Slot }}

  # Observability
  openobserve:
    image: public.ecr.aws/zinclabs/openobserve:latest
    environment:
      - ZO_CLUSTER_NAME=production
      - ZO_INSTANCE_NAME={{ .Task.Slot }}

  # Network Security
  suricata:
    image: jasonish/suricata:latest
    network_mode: host
    cap_add:
      - NET_ADMIN
      - SYS_NICE

Agent Configuration Management

// Agent configuration structure
#[derive(Debug, Serialize, Deserialize)]
pub struct AgentConfig {
    pub agent_id: String,
    pub platform: Platform,
    pub collection_interval: Duration,
    pub heartbeat_interval: Duration,
    pub monitoring: MonitoringConfig,
    pub communication: CommunicationConfig,
    pub security: SecurityConfig,
}

#[derive(Debug, Serialize, Deserialize)]
pub enum Platform {
    Linux(LinuxConfig),
    MacOS(MacOSConfig),
    Windows(WindowsConfig),
}

#[derive(Debug, Serialize, Deserialize)]
pub struct MonitoringConfig {
    pub enable_syscalls: bool,
    pub enable_network: bool,
    pub enable_files: bool,
    pub enable_processes: bool,
    pub enable_registry: bool, // Windows only
    pub enable_keychain: bool, // macOS only
}

SIGMA Rules Integration

// SIGMA rules processing pipeline
pub struct SigmaProcessor {
    rules: Vec<SigmaRule>,
    compiled_patterns: HashMap<String, CompiledRule>,
    mitre_mapping: HashMap<String, Vec<String>>,
}

impl SigmaProcessor {
    pub async fn load_rules(&mut self, rules_path: &Path) -> Result<usize> {
        let mut loaded = 0;

        for entry in fs::read_dir(rules_path)? {
            let path = entry?.path();
            if path.extension() == Some(OsStr::new("yml")) {
                let rule = self.parse_sigma_rule(&path).await?;
                self.compile_rule(&rule)?;
                self.rules.push(rule);
                loaded += 1;
            }
        }

        info!("Loaded {} SIGMA rules", loaded);
        Ok(loaded)
    }

    pub fn evaluate_event(&self, event: &SecurityEvent) -> Vec<Alert> {
        self.rules.par_iter()
            .filter_map(|rule| self.match_rule(event, rule))
            .collect()
    }
}

πŸ“Š Performance Metrics and Monitoring

Key Performance Indicators (KPIs)

MetricTargetMonitoring Method
Event Processing Rate100,000+ EPSPrometheus + Grafana
Detection Latency< 1 secondBuilt-in metrics
False Positive Rate< 2%Manual validation
Agent CPU Usage< 5%System monitoring
Memory Usage< 512MB per agentResource monitoring
Network Bandwidth< 100KB/s per agentNetwork monitoring

Monitoring Stack

# Prometheus configuration
[prometheus]
listen_address = "0.0.0.0:9090"
retention_time = "15d"

[prometheus.scrape_configs]
[[prometheus.scrape_configs]]
job_name = "rust-siem"
static_configs = [
  { targets = ["rust-siem:8080"] }
]

[[prometheus.scrape_configs]]
job_name = "vector"
static_configs = [
  { targets = ["vector:9598"] }
]

πŸ”’ Security Considerations

Security by Design Principles

  1. Memory Safety: Rust’s ownership model prevents buffer overflows and memory corruption
  2. Input Validation: All external inputs validated and sanitized
  3. Least Privilege: Agents run with minimal required permissions
  4. Encryption: All communications encrypted with TLS 1.3
  5. Authentication: Multi-factor authentication and certificate-based agent auth
  6. Audit Logging: Comprehensive audit trail for all system operations

Threat Model

ThreatMitigationImplementation
Agent CompromiseCertificate pinning, code signingmTLS, signed binaries
Data InterceptionEnd-to-end encryptionTLS 1.3, certificate validation
Privilege EscalationLeast privilege principleCapability-based permissions
Rule TamperingDigital signaturesSigned rule packages
Resource ExhaustionRate limiting, resource capsBuilt-in throttling

πŸ’° Cost Analysis and ROI

Total Cost of Ownership (3 Years)

ComponentYear 1Year 2Year 3Notes
Development$500K$200K$100KInternal development team
Infrastructure$100K$120K$140KCloud hosting, storage
Licensing$0$0$0Open source components
Maintenance$50K$100K$120KOngoing support
Training$30K$10K$10KStaff training
Total$680K$430K$370K3-year total: $1.48M

Comparison with Commercial SIEM

Solution3-Year TCOEPS CapacityStorage CostMaintenance
Rust SIEM$1.48M100K+$0.01/GB/dayLow
Splunk Enterprise$3.2M50K$2.00/GB/dayHigh
IBM QRadar$2.8M75K$1.50/GB/dayHigh
ArcSight ESM$2.5M60K$1.25/GB/dayMedium

ROI Benefits:

πŸš€ Deployment Guide

Prerequisites

# System requirements per component
CPU: 8+ cores (16+ recommended)
RAM: 32GB+ (64GB+ for production)
Storage: 1TB+ SSD (10TB+ for log retention)
Network: 10Gbps+ (for high-volume environments)

# Software dependencies
Docker 24.0+
Docker Compose 2.0+
Kubernetes 1.28+ (for production)
Rust 1.75+
Swift 5.9+ (macOS development)
.NET 8.0+ (Windows development)

Quick Start Deployment

#!/bin/bash
# Quick deployment script

# 1. Clone the repository
git clone https://github.com/your-org/rust-siem-platform.git
cd rust-siem-platform

# 2. Initialize environment
./scripts/init-environment.sh

# 3. Download threat intelligence feeds
./scripts/download-rules.sh

# 4. Deploy core platform
docker-compose up -d

# 5. Deploy agents
./scripts/deploy-agents.sh

# 6. Verify deployment
./scripts/health-check.sh

Production Deployment (Kubernetes)

# k8s/namespace.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: rust-siem
  labels:
    name: rust-siem
    environment: production
---
# k8s/rust-siem-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: rust-siem-core
  namespace: rust-siem
spec:
  replicas: 3
  selector:
    matchLabels:
      app: rust-siem-core
  template:
    metadata:
      labels:
        app: rust-siem-core
    spec:
      containers:
        - name: rust-siem
          image: rust-siem:latest
          ports:
            - containerPort: 8080
          resources:
            requests:
              cpu: 1000m
              memory: 2Gi
            limits:
              cpu: 2000m
              memory: 4Gi
          env:
            - name: RUST_LOG
              value: "info"
            - name: DATABASE_URL
              valueFrom:
                secretKeyRef:
                  name: rust-siem-secrets
                  key: database-url

πŸ“ˆ Roadmap and Future Enhancements

Short Term (6 months)

Medium Term (12 months)

Long Term (24 months)

πŸŽ“ Training and Adoption

Training Program

RoleDurationContentCertification
Administrators40 hoursPlatform management, rule tuningRust SIEM Admin
Analysts60 hoursThreat hunting, incident responseRust SIEM Analyst
Engineers80 hoursCustom rule development, integrationRust SIEM Engineer
Executives8 hoursROI, compliance, strategic overviewExecutive Briefing

Knowledge Transfer Plan

  1. Documentation: Comprehensive technical and user documentation
  2. Video Tutorials: Step-by-step video guides for common tasks
  3. Hands-on Labs: Interactive training environments
  4. Mentorship: Pairing with experienced team members
  5. Community: Internal Slack/Teams channels for ongoing support

πŸ“ž Support and Maintenance

Support Tiers

TierResponse TimeCoverageCost
CommunityBest effortForums, GitHub issuesFree
Professional4 hoursEmail, chat$25K/year
Enterprise1 hourPhone, dedicated support$75K/year
Critical15 minutes24/7 on-call engineer$150K/year

Maintenance Schedule

πŸ† Success Metrics

Technical Metrics

Business Metrics

πŸ“š Additional Resources

Community Resources

Training Materials


Last Updated: January 2025
Version: 1.0
Authors: Security Architecture Team
Review Cycle: Quarterly

This document is maintained in our GitHub repository and updated based on community feedback and project evolution.

Swift-Based Solutions for macOS

πŸ”₯ Primary Swift-Based Solutions

1. Sinter (Trail of Bits)

Sinter is the first available open-source endpoint protection agent written entirely in Swift, with support for Apple’s new EndpointSecurity API from first principles. It’s a 100% user-mode endpoint security agent for macOS 10.15 and above that uses the EndpointSecurity API to receive authorization callbacks from the macOS kernel for security-relevant event types.

2. Red Canary Mac Monitor (Most Active)

Red Canary Mac Monitor is an advanced, stand-alone system monitoring tool tailor-made for macOS security research. Beginning with Endpoint Security (ES), it collects and enriches system events, displaying them graphically, with an expansive feature set designed to reduce noise.

3. AtomicESClient (Red Canary)

Simple Swift program of just over 200 lines of code which shows the basics of how to create an β€œentry point” and logger callback function, model a basic es_message_t and process execution event ES_EVENT_TYPE_NOTIFY_EXEC.

πŸ› οΈ Additional Tools & Libraries

4. Santa (Google β†’ Community Fork)

Santa is a binary authorization and monitoring system for macOS with multiple modes, code signing-based rules, and event logging. As of 2025, Santa is no longer maintained by Google, but there’s an actively maintained fork at https://github.com/northpolesec/santa

5. ESFang (WithSecure)

ESFang is a tool devised for modular consumption of EndpointSecurity Framework (ESF) events from the MacOS environment, designed to overcome issues like silent data dropping and strict event type consumption.

6. Swift ES Helper Libraries

A module to expose the Endpoint Security library to Swift, allowing you to import the C based Endpoint Security framework into your Swift code.

🎯 Recommendations for Your XDR/OXDR Development

Given your focus on security architecture through threat modeling and XDR platform development, I’d recommend:

  1. Start with Red Canary Mac Monitor - Most actively maintained, Swift-based, comprehensive feature set
  2. Study AtomicESClient - Clean educational implementation for understanding ES fundamentals
  3. Reference Sinter’s architecture - Despite being archived, it solved many real-world authorization challenges
  4. Consider ESFang for telemetry patterns - Good reference for handling ES data ingestion at scale

The ecosystem shows that Swift is increasingly becoming the preferred language for macOS security tooling, aligning with Apple’s strategic direction and offering the memory safety advantages you’d want in security-critical code.

Rust and eBPF Requirements

🎯 Top Matches for Rust And EBPF Requirements

1. Pulsar - Event-Driven Security Framework

GitHub: https://github.com/exein-io/pulsar

Perfect match - A modular and blazing fast runtime security tool for IoT, powered by eBPF and written entirely in Rust. Pulsar is an event-driven framework for monitoring Linux device activity with exactly the monitoring capabilities you specified.

Capabilities:

Security Architecture: Allows you to collect runtime information from the Linux kernel through modules, enrich and transform this information into events, and apply security policies through a rules engine to generate alerts when undesired system behavior occurs.

2. ingraind/foniod - Production Security Agent

GitHub: https://github.com/foniod/foniod

ingraind is a security monitoring agent built around RedBPF for complex containerized environments and endpoints. Uses eBPF probes to provide safe and performant instrumentation for any Linux-based environment.

Key Features:

3. RedBPF Ecosystem

GitHub: https://github.com/foniod/redbpf

The redbpf project is a collection of tools and libraries to build eBPF programs using Rust, allowing users to write both BPF programs and userspace programs in Rust.

Dependency Match: Uses redbpf = "2.3", providing HashMap, PerCpuHashMap, Array, PerfMap, and support for KProbe, KRetProbe, UProbe, SocketFilter, XDP, and Tracepoint.

4. Aya-Based Security Projects

GitHub: https://github.com/aya-rs/aya

Aya is an eBPF library built purely in Rust with BTF support, offering compile-once-run-everywhere solutions without dependencies on libbpf or bcc.

Notable Security Projects:

5. eBPFGuard - Security Policy Framework

GitHub: https://github.com/deepfence/ebpfguard

Rust library for writing Linux security policies using eBPF, providing a policy manager that can attach to LSM hooks and define security policies.

πŸ”§ Implementation-Ready Examples

System Call Monitoring: RedBPF provides comprehensive APIs for kernel space BPF development, including XDP programs for network packet tracing and system call instrumentation.

File System Monitoring with inotify Integration: ingraind uses eBPF to collect file access patterns and integrates with existing monitoring stacks like StatsD for metrics collection.

Network Connection Tracking: Aya-based projects demonstrate creating eBPF sampling profilers and network monitoring tools with performance optimization in mind.

πŸ›‘οΈ Security-by-Design Considerations

Threat Modeling Perspective: These projects address key attack vectors:

Defensive Programming Practices:

πŸ“š Getting Started

For your XDR/OXDR platform development, I’d recommend starting with Pulsar as it most closely matches your dependency requirements and provides a complete modular framework. The foniod project offers a more mature, production-ready codebase if you need immediate deployment capabilities.

All these projects demonstrate security automation patterns and provide excellent foundations for building custom security monitoring solutions with the exact capabilities you specified.