1163 words
6 minutes
eBPF Use Cases: Revolutionizing Security, Networking, and Observability

eBPF Use Cases: Revolutionizing Security, Networking, and Observability#

eBPF has transformed from an interesting kernel technology to a production-ready solution powering critical infrastructure worldwide. This post explores how eBPF is being used in three major domains: security, networking, and observability, with real-world examples and practical implementations.

Security: The New Frontier of Runtime Protection#

Runtime Security Monitoring#

eBPF enables unprecedented visibility into system behavior without modifying applications or requiring kernel modules.

Example: Detecting Suspicious Process Behavior#

SEC("tracepoint/sched/sched_process_exec")
int detect_suspicious_exec(struct trace_event_raw_sched_process_exec *ctx) {
char comm[TASK_COMM_LEN];
bpf_get_current_comm(&comm, sizeof(comm));
// Detect execution from /tmp or /dev/shm
if (strstr(ctx->filename, "/tmp/") || strstr(ctx->filename, "/dev/shm/")) {
// Alert on suspicious execution location
bpf_printk("ALERT: Suspicious exec from %s by %s\n",
ctx->filename, comm);
}
return 0;
}

Container Security#

eBPF provides deep visibility into container operations at the kernel level, enabling security tools to:

  • Monitor system calls per container
  • Track network connections
  • Detect container escapes
  • Enforce security policies

Production Example: Falco#

# Falco rule using eBPF for container security
- rule: Container Drift Detected
desc: Detect new executables in a running container
condition: >
container and proc.name != <known_processes>
and evt.type = execve
output: >
New process launched in container
(user=%user.name command=%proc.cmdline container=%container.name)

Network Security#

DDoS Mitigation with XDP#

SEC("xdp")
int xdp_ddos_mitigate(struct xdp_md *ctx) {
void *data_end = (void *)(long)ctx->data_end;
void *data = (void *)(long)ctx->data;
struct ethhdr *eth = data;
// Rate limiting per source IP
struct iphdr *ip = data + sizeof(*eth);
if (ip + 1 > data_end)
return XDP_PASS;
__u32 src_ip = ip->saddr;
struct rate_limit *rl = bpf_map_lookup_elem(&rate_map, &src_ip);
if (rl && rl->packets > THRESHOLD) {
// Drop packets exceeding threshold
return XDP_DROP;
}
// Update rate limit counter
update_rate_limit(src_ip);
return XDP_PASS;
}

Real-World Security Deployments#

1. Cloudflare - L4Drop#

  • Challenge: Mitigate DDoS attacks at line rate
  • Solution: XDP-based packet filtering
  • Result: Drops malicious packets in < 1 microsecond

2. Netflix - Cloud Security#

  • Challenge: Monitor thousands of microservices
  • Solution: eBPF-based system call monitoring
  • Result: Real-time security insights with < 1% overhead

3. Google - gVisor TLS Inspector#

  • Challenge: Inspect encrypted traffic for security policies
  • Solution: eBPF program capturing TLS handshake SNI
  • Result: Policy enforcement without decryption

Networking: Performance at Scale#

High-Performance Load Balancing#

Facebook’s Katran#

// Simplified version of Facebook's Katran load balancer
SEC("xdp")
int xdp_load_balancer(struct xdp_md *ctx) {
// Parse packet headers
struct header_pointers hdr = parse_headers(ctx);
if (!hdr.ip)
return XDP_PASS;
// Compute hash for consistent hashing
__u32 hash = jhash_2words(hdr.ip->saddr,
hdr.tcp ? hdr.tcp->source : 0,
HASH_SEED);
// Select backend based on hash
struct backend *backend = select_backend(hash);
if (!backend)
return XDP_PASS;
// Encapsulate and redirect
encap_and_redirect(ctx, backend);
return XDP_REDIRECT;
}

Performance Impact:

  • 10x more packets per second vs IPVS
  • Sub-microsecond latency
  • Linear scaling with CPU cores

Service Mesh Data Plane#

Cilium - eBPF-powered Kubernetes Networking#

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
name: api-access
spec:
endpointSelector:
matchLabels:
app: api-service
ingress:
- fromEndpoints:
- matchLabels:
app: frontend
toPorts:
- ports:
- port: "80"
protocol: TCP
rules:
http:
- method: "GET"
path: "/api/v1/.*"

Benefits:

  • No sidecar proxy overhead
  • Kernel-level policy enforcement
  • Connection-level load balancing
  • Transparent service mesh

Network Performance Optimization#

TCP Congestion Control#

// Custom TCP congestion control algorithm
struct tcp_congestion_ops my_cc = {
.name = "my_ebpf_cc",
.init = ebpf_cc_init,
.cong_avoid = ebpf_cong_avoid,
.set_state = ebpf_set_state,
.undo_cwnd = ebpf_undo_cwnd,
};
SEC("struct_ops/tcp_congestion_ops")
struct tcp_congestion_ops *ebpf_cc = &my_cc;

Production Networking Examples#

1. LinkedIn - TCP Optimization#

  • Challenge: Optimize TCP for datacenter networks
  • Solution: eBPF-based congestion control
  • Result: 30% reduction in tail latency

2. Shopify - Edge Load Balancing#

  • Challenge: Handle Black Friday traffic spikes
  • Solution: XDP-based load balancer
  • Result: 5x increase in capacity

Observability: Deep Insights with Minimal Overhead#

Distributed Tracing#

Trace HTTP Requests Across Services#

struct trace_event {
__u64 timestamp;
__u32 pid;
__u32 tid;
char comm[16];
__u64 duration_ns;
};
SEC("uprobe/http_handler")
int trace_http_start(struct pt_regs *ctx) {
__u64 pid_tgid = bpf_get_current_pid_tgid();
__u64 ts = bpf_ktime_get_ns();
// Store start timestamp
bpf_map_update_elem(&start_times, &pid_tgid, &ts, BPF_ANY);
return 0;
}
SEC("uretprobe/http_handler")
int trace_http_end(struct pt_regs *ctx) {
__u64 pid_tgid = bpf_get_current_pid_tgid();
__u64 *start_ts = bpf_map_lookup_elem(&start_times, &pid_tgid);
if (!start_ts)
return 0;
struct trace_event event = {};
event.timestamp = bpf_ktime_get_ns();
event.duration_ns = event.timestamp - *start_ts;
event.pid = pid_tgid >> 32;
event.tid = pid_tgid;
bpf_get_current_comm(&event.comm, sizeof(event.comm));
// Send to user space
bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU,
&event, sizeof(event));
return 0;
}

Continuous Profiling#

CPU Profiling with Stack Traces#

SEC("perf_event")
int profile_cpu(struct bpf_perf_event_data *ctx) {
__u32 pid = bpf_get_current_pid_tgid() >> 32;
// Get stack trace
__u64 stack_id = bpf_get_stackid(ctx, &stacks,
BPF_F_USER_STACK);
// Count samples per stack
struct stack_count_key key = {
.pid = pid,
.kernel_stack_id = -1,
.user_stack_id = stack_id,
};
increment_stack_count(&key);
return 0;
}

Custom Metrics and Monitoring#

Application-Specific Metrics#

# Using bcc to create custom metrics
from bcc import BPF
program = """
BPF_HISTOGRAM(latency_hist, u64);
int trace_db_query(struct pt_regs *ctx) {
u64 ts = bpf_ktime_get_ns();
u64 pid = bpf_get_current_pid_tgid();
start_times.update(&pid, &ts);
return 0;
}
int trace_db_query_return(struct pt_regs *ctx) {
u64 pid = bpf_get_current_pid_tgid();
u64 *start = start_times.lookup(&pid);
if (start) {
u64 delta = bpf_ktime_get_ns() - *start;
latency_hist.increment(bpf_log2l(delta));
start_times.delete(&pid);
}
return 0;
}
"""
b = BPF(text=program)
b.attach_uprobe(name="mysql", sym="mysql_query", fn_name="trace_db_query")
b.attach_uretprobe(name="mysql", sym="mysql_query", fn_name="trace_db_query_return")

Real-World Observability Deployments#

1. Netflix - FlameScope#

  • Challenge: Understand performance variability
  • Solution: eBPF-based subsecond offset heat maps
  • Result: Identified previously invisible performance patterns

2. Datadog - NPM (Network Performance Monitoring)#

  • Challenge: Monitor network flows without agents
  • Solution: eBPF programs tracking connections
  • Result: Complete network visibility with minimal overhead

3. New Relic - Pixie#

  • Challenge: Instant Kubernetes observability
  • Solution: eBPF-based automatic instrumentation
  • Result: No code changes required for full observability

Advanced Use Cases#

1. Chaos Engineering#

// Inject controlled failures for testing
SEC("kprobe/tcp_sendmsg")
int inject_network_delay(struct pt_regs *ctx) {
if (should_inject_fault()) {
// Add artificial delay
bpf_ktime_get_ns(); // Simulate processing
return -EAGAIN; // Force retry
}
return 0;
}

2. Smart Traffic Shaping#

// Prioritize traffic based on application behavior
SEC("tc")
int shape_traffic(struct __sk_buff *skb) {
// Identify application based on payload
if (is_video_streaming(skb)) {
skb->priority = TC_PRIO_INTERACTIVE;
} else if (is_bulk_transfer(skb)) {
skb->priority = TC_PRIO_BULK;
}
return TC_ACT_OK;
}

3. Database Query Optimization#

Monitor and optimize database queries in real-time:

  • Track query patterns
  • Identify slow queries
  • Suggest index improvements
  • Cache frequently accessed data

Best Practices for Production eBPF#

1. Performance Considerations#

  • Use per-CPU maps to avoid contention
  • Minimize work in eBPF programs
  • Batch operations when possible
  • Profile eBPF programs themselves

2. Security Guidelines#

  • Implement proper RBAC for eBPF access
  • Audit eBPF program loading
  • Use signed eBPF programs
  • Monitor eBPF-related syscalls

3. Reliability Patterns#

  • Implement circuit breakers
  • Use ringbuffer maps for reliable event delivery
  • Handle map full conditions gracefully
  • Test with kernel version variations

Future Directions#

  1. eBPF for Databases: Query optimization and caching
  2. Edge Computing: Running eBPF on IoT devices
  3. Hardware Offload: SmartNIC eBPF processing
  4. Cross-Platform: Windows and macOS support

Integration with Modern Stack#

  • Service Mesh: Replacing sidecars with eBPF
  • Serverless: Fast cold starts with eBPF
  • GitOps: eBPF program deployment via Git
  • AIOps: ML-driven eBPF program generation

Conclusion#

eBPF has proven itself as a transformative technology across security, networking, and observability domains. Its ability to provide deep kernel-level insights and control with minimal overhead has made it the foundation for next-generation infrastructure tools.

From Cloudflare’s DDoS protection to Netflix’s performance monitoring, eBPF is powering critical systems at scale. As the ecosystem matures and tools become more accessible, we can expect eBPF adoption to accelerate across all aspects of systems engineering.

The examples in this post demonstrate that eBPF is not just a research project or experimental technology—it’s production-ready and solving real problems today. Whether you’re building security tools, optimizing networks, or improving observability, eBPF provides the primitives to innovate at the kernel level.


Getting Started with These Use Cases#

  1. Security: Start with Falco or Tetragon for runtime security
  2. Networking: Try Cilium for Kubernetes or Katran for load balancing
  3. Observability: Use bpftrace for ad-hoc analysis or Pixie for Kubernetes

Further Reading#


Next up: A hands-on guide to eBPF programming with practical examples and exercises!

eBPF Use Cases: Revolutionizing Security, Networking, and Observability
https://mranv.pages.dev/posts/ebpf-use-cases-security-networking-observability/
Author
Anubhav Gain
Published at
2025-01-16
License
CC BY-NC-SA 4.0