eBPF Map Metrics Prometheus Exporter: Advanced Observability with eBPF Iterators
This comprehensive guide explores building a standalone eBPF Map Metrics Prometheus exporter using eBPF Iterators—a powerful feature that enables comprehensive observability of eBPF programs without altering your existing application stack.
The Challenge: eBPF Observability
One of the fundamental challenges in eBPF development is gaining visibility into eBPF map usage, performance metrics, and operational statistics. Traditional approaches often require:
- Modifying existing applications to expose metrics
- Adding instrumentation code to eBPF programs
- Creating custom monitoring solutions for each use case
- Dealing with performance overhead from metrics collection
graph TB subgraph "Traditional eBPF Monitoring Challenges" C1[Application Modification] --> C2[Code Instrumentation] C3[Custom Solutions] --> C4[Performance Overhead] C5[Limited Visibility] --> C6[Complex Integration] end
subgraph "eBPF Iterator Solution" S1[No Code Changes] --> S2[Kernel-level Access] S3[Universal Monitoring] --> S4[Minimal Overhead] S5[Deep Visibility] --> S6[Simple Integration] end
style C1 fill:#ffcdd2 style C2 fill:#ffcdd2 style C3 fill:#ffcdd2 style C4 fill:#ffcdd2 style C5 fill:#ffcdd2 style C6 fill:#ffcdd2 style S1 fill:#c8e6c9 style S2 fill:#c8e6c9 style S3 fill:#c8e6c9 style S4 fill:#c8e6c9 style S5 fill:#c8e6c9 style S6 fill:#c8e6c9
Understanding eBPF Iterators
eBPF Iterators represent a breakthrough in kernel data structure inspection, providing a safe and efficient way to traverse kernel data structures without compromising system stability.
What is an eBPF Iterator?
An eBPF Iterator is a specialized type of eBPF program that allows users to iterate over specific types of kernel data structures by defining callback functions that are executed for every entry in various kernel structures.
graph LR subgraph "eBPF Iterator Architecture" subgraph "User Space" US1[Iterator Program] --> US2[Callback Definition] end
subgraph "Kernel Space" KS1[Iterator Framework] --> KS2[Data Structure Traversal] KS3[Safety Verification] --> KS4[Callback Execution] end
subgraph "Data Sources" DS1[BPF Maps] --> DS2[Task Lists] DS3[Network Structures] --> DS4[File Systems] end
US1 --> KS1 US2 --> KS4 KS2 --> DS1 KS2 --> DS2 KS2 --> DS3 KS2 --> DS4 end
style US1 fill:#e1f5fe style KS1 fill:#e8f5e8 style DS1 fill:#f3e5f5
Key Iterator Capabilities
eBPF Iterators can traverse various kernel data structures:
- BPF Maps: Inspect map contents, usage statistics, and metadata
- Task Structures: Analyze process information, CPU usage, and scheduling data
- Network Structures: Examine socket states, connection information, and traffic patterns
- File System Data: Access file descriptors, inode information, and I/O statistics
Iterator Types and Use Cases
Common Iterator Categories
graph TB subgraph "eBPF Iterator Types" subgraph "System Iterators" SI1[task] --> SI2[task_file] SI3[task_vma] --> SI4[tcp] end
subgraph "BPF Iterators" BI1[bpf_map] --> BI2[bpf_map_elem] BI3[bpf_prog] --> BI4[bpf_link] end
subgraph "Network Iterators" NI1[netlink] --> NI2[udp] NI3[unix] --> NI4[ipv6_route] end end
style SI1 fill:#e1f5fe style BI1 fill:#f3e5f5 style NI1 fill:#e8f5e8
Practical Applications
System Monitoring:
- CPU runtime analysis across all system tasks
- Memory usage patterns and allocation tracking
- Process lifecycle management and monitoring
Network Analysis:
- Connection state monitoring and analysis
- Traffic pattern identification and classification
- Socket resource usage and optimization
BPF Program Observability:
- Map utilization and performance metrics
- Program execution statistics and profiling
- Resource consumption analysis and optimization
Building the eBPF Map Metrics Exporter
Let’s build a comprehensive eBPF Map Metrics Prometheus exporter using eBPF Iterators.
Project Structure
ebpf-map-exporter/├── src/│ ├── iterator.bpf.c # eBPF Iterator program│ ├── exporter.c # User-space exporter│ └── metrics.h # Shared data structures├── build/│ └── Makefile├── docker/│ └── Dockerfile└── README.md
eBPF Iterator Implementation
First, let’s implement the eBPF iterator program that traverses BPF maps:
#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_tracing.h>#include <bpf/bpf_core_read.h>
// Metrics data structurestruct bpf_map_metrics { __u32 map_id; __u32 map_type; __u32 key_size; __u32 value_size; __u32 max_entries; __u64 memory_usage; __u64 ops_count; char name[16];};
// Output buffer for metricsstruct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 256 * 1024);} metrics_buffer SEC(".maps");
// Iterator for BPF mapsSEC("iter/bpf_map")int collect_map_metrics(struct bpf_iter__bpf_map *ctx) { struct bpf_map *map = ctx->map; struct bpf_map_metrics *metrics;
if (!map) return 0;
// Reserve space in ring buffer metrics = bpf_ringbuf_reserve(&metrics_buffer, sizeof(*metrics), 0); if (!metrics) return 0;
// Extract map information metrics->map_id = BPF_CORE_READ(map, id); metrics->map_type = BPF_CORE_READ(map, map_type); metrics->key_size = BPF_CORE_READ(map, key_size); metrics->value_size = BPF_CORE_READ(map, value_size); metrics->max_entries = BPF_CORE_READ(map, max_entries);
// Calculate memory usage (approximate) __u32 entry_size = metrics->key_size + metrics->value_size; metrics->memory_usage = (__u64)entry_size * metrics->max_entries;
// Get map name if available const char *name = BPF_CORE_READ(map, name); if (name) { bpf_probe_read_str(metrics->name, sizeof(metrics->name), name); } else { __builtin_memcpy(metrics->name, "unknown", 8); }
// For demonstration, we'll use a simple counter // In a real implementation, you'd track actual operations metrics->ops_count = metrics->map_id * 100; // Placeholder
// Submit metrics to user space bpf_ringbuf_submit(metrics, 0);
return 0;}
// Iterator for BPF map elements (for detailed analysis)SEC("iter/bpf_map_elem")int collect_map_element_metrics(struct bpf_iter__bpf_map_elem *ctx) { struct bpf_map *map = ctx->map; void *key = ctx->key; void *value = ctx->value;
if (!map || !key || !value) return 0;
// Here you could collect per-element statistics // For example: key distribution, value patterns, access frequency
// This is a simplified example - real implementation would // collect more sophisticated metrics
return 0;}
// Iterator for BPF programs (to correlate with map usage)SEC("iter/bpf_prog")int collect_prog_metrics(struct bpf_iter__bpf_prog *ctx) { struct bpf_prog *prog = ctx->prog;
if (!prog) return 0;
// Collect program-related metrics that correlate with map usage // This could include execution statistics, memory usage, etc.
return 0;}
char _license[] SEC("license") = "GPL";
Advanced Map Analysis Iterator
Let’s create a more sophisticated iterator that provides deeper insights:
#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_tracing.h>#include <bpf/bpf_core_read.h>
// Advanced metrics structurestruct advanced_map_metrics { __u32 map_id; __u32 map_type; __u32 key_size; __u32 value_size; __u32 max_entries; __u32 current_entries; __u64 total_memory; __u64 used_memory; __u64 lookup_count; __u64 update_count; __u64 delete_count; __u64 creation_time; __u64 last_access_time; float utilization_ratio; char name[32]; char prog_name[32];};
// Enhanced output bufferstruct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 1024 * 1024);} advanced_metrics_buffer SEC(".maps");
// Map for tracking operation countsstruct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1024); __type(key, __u32); __type(value, struct map_op_stats);} map_op_tracker SEC(".maps");
struct map_op_stats { __u64 lookups; __u64 updates; __u64 deletes; __u64 last_op_time;};
// Helper function to calculate map utilizationstatic float calculate_utilization(__u32 current, __u32 max) { if (max == 0) return 0.0; return (float)current / (float)max;}
// Helper function to estimate current entries (simplified)static __u32 estimate_current_entries(struct bpf_map *map) { // This is a simplified estimation // Real implementation would need to traverse the map structure __u32 max_entries = BPF_CORE_READ(map, max_entries); return max_entries / 4; // Placeholder estimation}
SEC("iter/bpf_map")int collect_advanced_map_metrics(struct bpf_iter__bpf_map *ctx) { struct bpf_map *map = ctx->map; struct advanced_map_metrics *metrics; struct map_op_stats *op_stats; __u32 map_id;
if (!map) return 0;
map_id = BPF_CORE_READ(map, id);
// Reserve space for advanced metrics metrics = bpf_ringbuf_reserve(&advanced_metrics_buffer, sizeof(*metrics), 0); if (!metrics) return 0;
// Basic map information metrics->map_id = map_id; metrics->map_type = BPF_CORE_READ(map, map_type); metrics->key_size = BPF_CORE_READ(map, key_size); metrics->value_size = BPF_CORE_READ(map, value_size); metrics->max_entries = BPF_CORE_READ(map, max_entries);
// Estimate current entries (in real implementation, this would be more accurate) metrics->current_entries = estimate_current_entries(map);
// Memory calculations __u32 entry_size = metrics->key_size + metrics->value_size; metrics->total_memory = (__u64)entry_size * metrics->max_entries; metrics->used_memory = (__u64)entry_size * metrics->current_entries;
// Calculate utilization ratio metrics->utilization_ratio = calculate_utilization(metrics->current_entries, metrics->max_entries);
// Get operation statistics op_stats = bpf_map_lookup_elem(&map_op_tracker, &map_id); if (op_stats) { metrics->lookup_count = op_stats->lookups; metrics->update_count = op_stats->updates; metrics->delete_count = op_stats->deletes; metrics->last_access_time = op_stats->last_op_time; } else { // Initialize if not found metrics->lookup_count = 0; metrics->update_count = 0; metrics->delete_count = 0; metrics->last_access_time = 0; }
// Timestamp metrics->creation_time = bpf_ktime_get_ns();
// Extract map name const char *name = BPF_CORE_READ(map, name); if (name) { bpf_probe_read_str(metrics->name, sizeof(metrics->name), name); } else { __builtin_memcpy(metrics->name, "unnamed", 8); }
// Get associated program name (if available) __builtin_memcpy(metrics->prog_name, "unknown", 8);
// Submit advanced metrics bpf_ringbuf_submit(metrics, 0);
return 0;}
// Hook to track map operations (for more accurate statistics)SEC("fentry/bpf_map_lookup_elem")int track_map_lookup(struct bpf_map *map, void *key) { __u32 map_id = BPF_CORE_READ(map, id); struct map_op_stats *stats; struct map_op_stats new_stats = {0};
stats = bpf_map_lookup_elem(&map_op_tracker, &map_id); if (!stats) { stats = &new_stats; }
stats->lookups++; stats->last_op_time = bpf_ktime_get_ns();
bpf_map_update_elem(&map_op_tracker, &map_id, stats, BPF_ANY);
return 0;}
SEC("fentry/bpf_map_update_elem")int track_map_update(struct bpf_map *map, void *key, void *value, __u64 flags) { __u32 map_id = BPF_CORE_READ(map, id); struct map_op_stats *stats; struct map_op_stats new_stats = {0};
stats = bpf_map_lookup_elem(&map_op_tracker, &map_id); if (!stats) { stats = &new_stats; }
stats->updates++; stats->last_op_time = bpf_ktime_get_ns();
bpf_map_update_elem(&map_op_tracker, &map_id, stats, BPF_ANY);
return 0;}
SEC("fentry/bpf_map_delete_elem")int track_map_delete(struct bpf_map *map, void *key) { __u32 map_id = BPF_CORE_READ(map, id); struct map_op_stats *stats; struct map_op_stats new_stats = {0};
stats = bpf_map_lookup_elem(&map_op_tracker, &map_id); if (!stats) { stats = &new_stats; }
stats->deletes++; stats->last_op_time = bpf_ktime_get_ns();
bpf_map_update_elem(&map_op_tracker, &map_id, stats, BPF_ANY);
return 0;}
char _license[] SEC("license") = "GPL";
User-Space Prometheus Exporter
Now let’s implement the user-space component that consumes iterator output and exports Prometheus metrics:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <unistd.h>#include <signal.h>#include <time.h>#include <errno.h>#include <sys/stat.h>#include <microhttpd.h>#include <bpf/libbpf.h>#include <bpf/bpf.h>#include "metrics.h"
#define METRICS_PORT 8080#define METRICS_PATH "/metrics"#define MAX_METRICS_SIZE 65536
// Global statestatic struct bpf_object *obj = NULL;static struct ring_buffer *rb = NULL;static volatile int running = 1;static char metrics_output[MAX_METRICS_SIZE];static time_t last_update = 0;
// Metrics storagestruct metrics_store { struct advanced_map_metrics maps[1024]; int count; time_t last_updated;} metrics_store = {0};
// Signal handlerstatic void sig_handler(int sig) { running = 0;}
// Ring buffer callback for processing metricsstatic int handle_metrics(void *ctx, void *data, size_t data_sz) { struct advanced_map_metrics *metrics = data;
if (metrics_store.count < 1024) { memcpy(&metrics_store.maps[metrics_store.count], metrics, sizeof(*metrics)); metrics_store.count++; metrics_store.last_updated = time(NULL); }
return 0;}
// Generate Prometheus metrics formatstatic void generate_prometheus_metrics() { char *p = metrics_output; size_t remaining = MAX_METRICS_SIZE; int written; time_t now = time(NULL);
// Clear previous metrics memset(metrics_output, 0, MAX_METRICS_SIZE);
// Prometheus headers written = snprintf(p, remaining, "# HELP ebpf_map_info Information about eBPF maps\n" "# TYPE ebpf_map_info gauge\n"); p += written; remaining -= written;
written = snprintf(p, remaining, "# HELP ebpf_map_memory_bytes Memory usage of eBPF maps in bytes\n" "# TYPE ebpf_map_memory_bytes gauge\n"); p += written; remaining -= written;
written = snprintf(p, remaining, "# HELP ebpf_map_utilization_ratio Current utilization ratio of eBPF maps\n" "# TYPE ebpf_map_utilization_ratio gauge\n"); p += written; remaining -= written;
written = snprintf(p, remaining, "# HELP ebpf_map_operations_total Total operations performed on eBPF maps\n" "# TYPE ebpf_map_operations_total counter\n"); p += written; remaining -= written;
// Generate metrics for each map for (int i = 0; i < metrics_store.count && remaining > 0; i++) { struct advanced_map_metrics *m = &metrics_store.maps[i];
// Map info metric written = snprintf(p, remaining, "ebpf_map_info{map_id=\"%u\",name=\"%s\",type=\"%u\",key_size=\"%u\",value_size=\"%u\",max_entries=\"%u\"} 1\n", m->map_id, m->name, m->map_type, m->key_size, m->value_size, m->max_entries); p += written; remaining -= written;
// Memory usage metrics written = snprintf(p, remaining, "ebpf_map_memory_bytes{map_id=\"%u\",name=\"%s\",type=\"total\"} %lu\n", m->map_id, m->name, m->total_memory); p += written; remaining -= written;
written = snprintf(p, remaining, "ebpf_map_memory_bytes{map_id=\"%u\",name=\"%s\",type=\"used\"} %lu\n", m->map_id, m->name, m->used_memory); p += written; remaining -= written;
// Utilization ratio written = snprintf(p, remaining, "ebpf_map_utilization_ratio{map_id=\"%u\",name=\"%s\"} %.2f\n", m->map_id, m->name, m->utilization_ratio); p += written; remaining -= written;
// Operation counters written = snprintf(p, remaining, "ebpf_map_operations_total{map_id=\"%u\",name=\"%s\",operation=\"lookup\"} %lu\n", m->map_id, m->name, m->lookup_count); p += written; remaining -= written;
written = snprintf(p, remaining, "ebpf_map_operations_total{map_id=\"%u\",name=\"%s\",operation=\"update\"} %lu\n", m->map_id, m->name, m->update_count); p += written; remaining -= written;
written = snprintf(p, remaining, "ebpf_map_operations_total{map_id=\"%u\",name=\"%s\",operation=\"delete\"} %lu\n", m->map_id, m->name, m->delete_count); p += written; remaining -= written; }
// Add timestamp written = snprintf(p, remaining, "# HELP ebpf_exporter_last_update_timestamp_seconds Last update timestamp\n" "# TYPE ebpf_exporter_last_update_timestamp_seconds gauge\n" "ebpf_exporter_last_update_timestamp_seconds %ld\n", now);
last_update = now;}
// HTTP request handlerstatic enum MHD_Result handle_request(void *cls, struct MHD_Connection *connection, const char *url, const char *method, const char *version, const char *upload_data, size_t *upload_data_size, void **con_cls) { struct MHD_Response *response; enum MHD_Result ret;
if (strcmp(url, METRICS_PATH) != 0) { const char *not_found = "404 Not Found"; response = MHD_create_response_from_buffer(strlen(not_found), (void*)not_found, MHD_RESPMEM_PERSISTENT); ret = MHD_queue_response(connection, MHD_HTTP_NOT_FOUND, response); MHD_destroy_response(response); return ret; }
// Generate fresh metrics if needed time_t now = time(NULL); if (now - last_update > 5) { // Update every 5 seconds generate_prometheus_metrics(); }
response = MHD_create_response_from_buffer(strlen(metrics_output), (void*)metrics_output, MHD_RESPMEM_MUST_COPY);
MHD_add_response_header(response, "Content-Type", "text/plain; charset=utf-8"); ret = MHD_queue_response(connection, MHD_HTTP_OK, response); MHD_destroy_response(response);
return ret;}
// Initialize eBPF program and iteratorstatic int init_ebpf() { int err; struct bpf_link *link;
// Open and load eBPF object obj = bpf_object__open_file("advanced_iterator.bpf.o", NULL); if (libbpf_get_error(obj)) { fprintf(stderr, "Failed to open eBPF object\n"); return -1; }
err = bpf_object__load(obj); if (err) { fprintf(stderr, "Failed to load eBPF object: %d\n", err); return -1; }
// Find and attach iterator program struct bpf_program *prog = bpf_object__find_program_by_name(obj, "collect_advanced_map_metrics"); if (!prog) { fprintf(stderr, "Failed to find iterator program\n"); return -1; }
link = bpf_program__attach(prog); if (libbpf_get_error(link)) { fprintf(stderr, "Failed to attach iterator program\n"); return -1; }
// Set up ring buffer int map_fd = bpf_object__find_map_fd_by_name(obj, "advanced_metrics_buffer"); if (map_fd < 0) { fprintf(stderr, "Failed to find metrics buffer map\n"); return -1; }
rb = ring_buffer__new(map_fd, handle_metrics, NULL, NULL); if (!rb) { fprintf(stderr, "Failed to create ring buffer\n"); return -1; }
printf("eBPF map metrics exporter initialized successfully\n"); return 0;}
// Metrics collection loopstatic void *metrics_collector(void *arg) { while (running) { // Poll ring buffer for new metrics ring_buffer__poll(rb, 1000); // 1 second timeout
// Periodically trigger iterator execution // This would typically be done through iterator attachment usleep(100000); // 100ms } return NULL;}
int main(int argc, char **argv) { struct MHD_Daemon *daemon; pthread_t collector_thread;
// Set up signal handlers signal(SIGINT, sig_handler); signal(SIGTERM, sig_handler);
// Initialize eBPF components if (init_ebpf() < 0) { fprintf(stderr, "Failed to initialize eBPF components\n"); return 1; }
// Start metrics collection thread if (pthread_create(&collector_thread, NULL, metrics_collector, NULL) != 0) { fprintf(stderr, "Failed to create collector thread\n"); return 1; }
// Start HTTP server daemon = MHD_start_daemon(MHD_USE_INTERNAL_POLLING_THREAD, METRICS_PORT, NULL, NULL, &handle_request, NULL, MHD_OPTION_END);
if (!daemon) { fprintf(stderr, "Failed to start HTTP server\n"); return 1; }
printf("eBPF Map Metrics Prometheus Exporter started on port %d\n", METRICS_PORT); printf("Metrics available at http://localhost:%d%s\n", METRICS_PORT, METRICS_PATH);
// Main loop while (running) { sleep(1); }
// Cleanup printf("\nShutting down...\n"); MHD_stop_daemon(daemon); pthread_join(collector_thread, NULL);
if (rb) ring_buffer__free(rb); if (obj) bpf_object__close(obj);
return 0;}
Shared Header File
#ifndef METRICS_H#define METRICS_H
#include <stdint.h>
// Shared structures between eBPF and user spacestruct bpf_map_metrics { uint32_t map_id; uint32_t map_type; uint32_t key_size; uint32_t value_size; uint32_t max_entries; uint64_t memory_usage; uint64_t ops_count; char name[16];};
struct advanced_map_metrics { uint32_t map_id; uint32_t map_type; uint32_t key_size; uint32_t value_size; uint32_t max_entries; uint32_t current_entries; uint64_t total_memory; uint64_t used_memory; uint64_t lookup_count; uint64_t update_count; uint64_t delete_count; uint64_t creation_time; uint64_t last_access_time; float utilization_ratio; char name[32]; char prog_name[32];};
struct map_op_stats { uint64_t lookups; uint64_t updates; uint64_t deletes; uint64_t last_op_time;};
#endif // METRICS_H
Build System and Deployment
Makefile
# MakefileCC = clangCFLAGS = -O2 -g -WallBPF_CFLAGS = -target bpf -O2 -g -c
# System includesLIBBPF_DIR = /usr/lib/x86_64-linux-gnuLIBBPF_INCLUDE = /usr/includeMHD_LIBS = -lmicrohttpdPTHREAD_LIBS = -lpthread
# eBPF object filesBPF_OBJECTS = iterator.bpf.o advanced_iterator.bpf.o
# User space binaryUSER_BINARY = ebpf-map-exporter
.PHONY: all clean install
all: $(BPF_OBJECTS) $(USER_BINARY)
# Compile eBPF programs%.bpf.o: %.bpf.c $(CC) $(BPF_CFLAGS) -I$(LIBBPF_INCLUDE) -c $< -o $@
# Generate vmlinux.h if neededvmlinux.h: bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h
# Compile user space program$(USER_BINARY): exporter.c $(BPF_OBJECTS) $(CC) $(CFLAGS) -I$(LIBBPF_INCLUDE) $< -L$(LIBBPF_DIR) \ -lbpf $(MHD_LIBS) $(PTHREAD_LIBS) -o $@
# Install system-wideinstall: all sudo cp $(USER_BINARY) /usr/local/bin/ sudo cp $(BPF_OBJECTS) /usr/local/share/ebpf-exporter/ sudo systemctl daemon-reload
# Clean build artifactsclean: rm -f *.o $(USER_BINARY) vmlinux.h
# Development targetsdev: all sudo ./$(USER_BINARY)
test: all # Run basic functionality tests sudo timeout 10s ./$(USER_BINARY) & sleep 5 curl -s http://localhost:8080/metrics | head -20 pkill -f $(USER_BINARY)
# Docker builddocker: docker build -t ebpf-map-exporter -f docker/Dockerfile .
.SUFFIXES: .bpf.c .bpf.o
Docker Configuration
# docker/DockerfileFROM ubuntu:22.04
# Install dependenciesRUN apt-get update && apt-get install -y \ clang \ libbpf-dev \ libmicrohttpd-dev \ linux-tools-common \ linux-tools-generic \ bpftool \ && rm -rf /var/lib/apt/lists/*
# Create working directoryWORKDIR /app
# Copy source codeCOPY src/ ./src/COPY build/Makefile ./
# Build the applicationRUN make all
# Create non-root user for securityRUN useradd -r -s /bin/false ebpf-exporter
# Expose metrics portEXPOSE 8080
# Set capabilities for eBPF operations# Note: In production, consider using privileged containers or specific capabilitiesUSER root
# Start the exporterCMD ["./ebpf-map-exporter"]
Systemd Service Configuration
[Unit]Description=eBPF Map Metrics Prometheus ExporterAfter=network.targetWants=network.target
[Service]Type=simpleUser=rootGroup=rootExecStart=/usr/local/bin/ebpf-map-exporterRestart=alwaysRestartSec=5StandardOutput=journalStandardError=journal
# Security settingsNoNewPrivileges=trueProtectSystem=strictProtectHome=trueReadWritePaths=/tmp
# Required for eBPF operationsAmbientCapabilities=CAP_SYS_ADMIN CAP_BPFCapabilityBoundingSet=CAP_SYS_ADMIN CAP_BPF
[Install]WantedBy=multi-user.target
Advanced Iterator Examples
Task CPU Usage Iterator
#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_tracing.h>
struct task_cpu_metrics { __u32 pid; __u32 tgid; __u64 utime; __u64 stime; __u64 runtime; char comm[16];};
struct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 256 * 1024);} task_metrics_buffer SEC(".maps");
SEC("iter/task")int collect_task_cpu_metrics(struct bpf_iter__task *ctx) { struct task_struct *task = ctx->task; struct task_cpu_metrics *metrics;
if (!task) return 0;
metrics = bpf_ringbuf_reserve(&task_metrics_buffer, sizeof(*metrics), 0); if (!metrics) return 0;
// Extract task information metrics->pid = BPF_CORE_READ(task, pid); metrics->tgid = BPF_CORE_READ(task, tgid);
// Get CPU usage statistics metrics->utime = BPF_CORE_READ(task, utime); metrics->stime = BPF_CORE_READ(task, stime);
// Calculate total runtime metrics->runtime = metrics->utime + metrics->stime;
// Get process name bpf_probe_read_str(metrics->comm, sizeof(metrics->comm), BPF_CORE_READ(task, comm));
bpf_ringbuf_submit(metrics, 0); return 0;}
char _license[] SEC("license") = "GPL";
Network Connection Iterator
#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_tracing.h>
struct connection_metrics { __be32 src_addr; __be32 dst_addr; __be16 src_port; __be16 dst_port; __u8 state; __u64 rx_bytes; __u64 tx_bytes; __u64 rx_packets; __u64 tx_packets;};
struct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 512 * 1024);} connection_metrics_buffer SEC(".maps");
SEC("iter/tcp")int collect_tcp_connection_metrics(struct bpf_iter__tcp *ctx) { struct sock *sk = ctx->sk; struct connection_metrics *metrics;
if (!sk) return 0;
metrics = bpf_ringbuf_reserve(&connection_metrics_buffer, sizeof(*metrics), 0); if (!metrics) return 0;
// Extract connection information struct inet_sock *inet = (struct inet_sock *)sk;
metrics->src_addr = BPF_CORE_READ(inet, inet_saddr); metrics->dst_addr = BPF_CORE_READ(inet, inet_daddr); metrics->src_port = BPF_CORE_READ(inet, inet_sport); metrics->dst_port = BPF_CORE_READ(inet, inet_dport);
// Get connection state metrics->state = BPF_CORE_READ(sk, __sk_common.skc_state);
// Extract traffic statistics (simplified) metrics->rx_bytes = BPF_CORE_READ(sk, sk_napi_id); // Placeholder metrics->tx_bytes = BPF_CORE_READ(sk, sk_napi_id); // Placeholder metrics->rx_packets = 0; // Would need more complex extraction metrics->tx_packets = 0; // Would need more complex extraction
bpf_ringbuf_submit(metrics, 0); return 0;}
char _license[] SEC("license") = "GPL";
Prometheus Integration and Grafana Dashboards
Prometheus Configuration
global: scrape_interval: 15s evaluation_interval: 15s
scrape_configs: - job_name: "ebpf-map-exporter" static_configs: - targets: ["localhost:8080"] scrape_interval: 10s metrics_path: /metrics
Grafana Dashboard JSON
{ "dashboard": { "title": "eBPF Map Metrics", "panels": [ { "title": "Map Memory Usage", "type": "graph", "targets": [ { "expr": "ebpf_map_memory_bytes", "legendFormat": "{{name}} - {{type}}" } ] }, { "title": "Map Utilization", "type": "singlestat", "targets": [ { "expr": "ebpf_map_utilization_ratio", "legendFormat": "{{name}}" } ] }, { "title": "Map Operations Rate", "type": "graph", "targets": [ { "expr": "rate(ebpf_map_operations_total[5m])", "legendFormat": "{{name}} - {{operation}}" } ] } ] }}
Performance Optimization and Best Practices
Memory Management
// Optimized ring buffer usage#define METRICS_BATCH_SIZE 64
struct metrics_batch { struct advanced_map_metrics metrics[METRICS_BATCH_SIZE]; int count;};
SEC("iter/bpf_map")int optimized_collect_metrics(struct bpf_iter__bpf_map *ctx) { static struct metrics_batch batch = {0}; struct bpf_map *map = ctx->map;
if (!map) return 0;
// Collect metrics in batch if (batch.count < METRICS_BATCH_SIZE) { collect_single_map_metrics(map, &batch.metrics[batch.count]); batch.count++; }
// Submit when batch is full if (batch.count >= METRICS_BATCH_SIZE) { submit_metrics_batch(&batch); batch.count = 0; }
return 0;}
CPU Usage Optimization
// Rate-limited metrics collectionstruct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1); __type(key, __u32); __type(value, __u64);} last_collection_time SEC(".maps");
SEC("iter/bpf_map")int rate_limited_collect_metrics(struct bpf_iter__bpf_map *ctx) { __u32 key = 0; __u64 *last_time; __u64 current_time = bpf_ktime_get_ns(); __u64 collection_interval = 1000000000; // 1 second in nanoseconds
last_time = bpf_map_lookup_elem(&last_collection_time, &key); if (last_time && (current_time - *last_time) < collection_interval) { return 0; // Skip collection if too soon }
// Update last collection time bpf_map_update_elem(&last_collection_time, &key, ¤t_time, BPF_ANY);
// Proceed with metrics collection return collect_map_metrics(ctx);}
Troubleshooting and Debugging
Common Issues and Solutions
1. Iterator Not Executing
# Check if iterator is properly attachedsudo bpftool prog list | grep itersudo bpftool link list
# Verify iterator target existsls /sys/kernel/debug/tracing/events/bpf/
2. Missing Metrics Data
# Check ring buffer for datasudo bpftool map dump name metrics_buffer
# Verify program loadingsudo dmesg | grep bpf
3. Permission Issues
# Ensure proper capabilitiessudo setcap cap_sys_admin,cap_bpf+ep ./ebpf-map-exporter
# Check BPF filesystemmount | grep bpf
Debug Output Enhancement
// Enhanced debugging macros#define DEBUG_PRINT(fmt, ...) \ do { \ char debug_msg[] = fmt; \ bpf_trace_printk(debug_msg, sizeof(debug_msg), \ ##__VA_ARGS__); \ } while (0)
SEC("iter/bpf_map")int debug_collect_metrics(struct bpf_iter__bpf_map *ctx) { struct bpf_map *map = ctx->map;
if (!map) { DEBUG_PRINT("No map found\n"); return 0; }
__u32 map_id = BPF_CORE_READ(map, id); DEBUG_PRINT("Processing map ID: %u\n", map_id);
// Continue with metrics collection... return collect_map_metrics(ctx);}
Conclusion
eBPF Iterators represent a powerful advancement in kernel observability, enabling comprehensive monitoring of eBPF programs and system resources without modifying existing applications. This implementation demonstrates:
Key Benefits
- Non-intrusive monitoring: No application code changes required
- Comprehensive visibility: Deep insights into eBPF map usage and performance
- Prometheus integration: Standard metrics format for existing monitoring infrastructure
- Minimal overhead: Efficient kernel-space data collection
- Real-time insights: Continuous monitoring capabilities
Production Considerations
- Security: Proper capability management and privilege separation
- Performance: Rate limiting and batch processing for high-volume environments
- Scalability: Horizontal scaling with multiple exporter instances
- Reliability: Error handling and graceful degradation
- Maintainability: Modular design and comprehensive documentation
Future Enhancements
- Machine Learning Integration: Anomaly detection and predictive analytics
- Advanced Filtering: Selective metrics collection based on criteria
- Multi-kernel Support: Cross-platform compatibility and feature detection
- Custom Dashboards: Specialized visualization for different use cases
The eBPF Map Metrics Prometheus Exporter showcases the true potential of eBPF Iterators for building sophisticated observability solutions that provide unprecedented visibility into kernel-level operations while maintaining system performance and stability.
Resources and Further Reading
Official Documentation
Advanced Topics
Tools and Libraries
Inspired by the original article by TJ. Podobnik on eBPFChirp Blog