2907 words
15 minutes
Advanced eBPF Security Patterns for Cloud-Native Kubernetes Environments

Advanced eBPF Security Patterns for Cloud-Native Kubernetes Environments#

As organizations increasingly adopt cloud-native architectures, traditional security approaches struggle to keep pace with the dynamic, ephemeral nature of containerized workloads. eBPF has emerged as the foundation for a new generation of security patterns that provide kernel-level visibility and enforcement without compromising performance. This guide explores advanced security patterns and their implementation in modern Kubernetes environments.

The Cloud-Native Security Challenge#

Traditional vs. eBPF-Based Security#

AspectTraditional SecurityeBPF-Based Security
VisibilityApplication layer onlyKernel to application layer
Performance ImpactHigh (proxy/sidecar overhead)Minimal (in-kernel processing)
Deployment ModelAgent per pod/sidecarShared kernel infrastructure
Update MechanismPod restarts requiredDynamic without restarts
Network PolicyIP-based, staticIdentity-based, dynamic
ScalabilityLimited by proxy capacityScales with kernel

Pattern 1: Identity-Based Zero-Trust Networking#

Overview#

Moving beyond IP-based security to workload identity enables true zero-trust networking in Kubernetes:

# Identity-based NetworkPolicy with Cilium
apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
name: api-server-policy
namespace: production
spec:
endpointSelector:
matchLabels:
app: api-server
version: v2
ingress:
- fromEndpoints:
- matchLabels:
app: frontend
environment: production
toPorts:
- ports:
- port: "8080"
protocol: TCP
rules:
http:
- method: "GET"
path: "/api/v2/.*"
- fromEndpoints:
- matchLabels:
app: admin-console
toPorts:
- ports:
- port: "8080"
protocol: TCP
rules:
http:
- method: ".*" # Admin can use all methods
egress:
- toEndpoints:
- matchLabels:
app: database
environment: production
toPorts:
- ports:
- port: "5432"
protocol: TCP
- toFQDNs:
- matchPattern: "*.internal.company.com"
toPorts:
- ports:
- port: "443"
protocol: TCP

Implementation with eBPF#

// eBPF program for identity-based filtering
SEC("cgroup/skb")
int identity_filter(struct __sk_buff *skb) {
// Extract packet information
struct packet_info pkt = {};
if (extract_packet_info(skb, &pkt) < 0)
return TC_ACT_OK;
// Get source and destination identities
struct identity *src_id = get_identity(pkt.src_ip, pkt.src_port);
struct identity *dst_id = get_identity(pkt.dst_ip, pkt.dst_port);
if (!src_id || !dst_id)
return TC_ACT_OK; // No identity, allow for now
// Check policy based on identities
struct policy_decision decision = check_policy(src_id, dst_id, &pkt);
if (decision.action == POLICY_DENY) {
// Log security event
struct security_event evt = {
.type = EVT_POLICY_DENIAL,
.src_identity = src_id->id,
.dst_identity = dst_id->id,
.timestamp = bpf_ktime_get_ns(),
};
security_events.perf_submit(ctx, &evt, sizeof(evt));
return TC_ACT_SHOT;
}
// Apply additional actions (encryption, marking, etc.)
if (decision.encrypt) {
mark_for_encryption(skb, decision.encryption_key_id);
}
return TC_ACT_OK;
}

Advanced Identity Features#

// Kubernetes operator for dynamic identity management
type IdentityManager struct {
client kubernetes.Interface
ciliumClient cilium.Interface
cache *IdentityCache
}
func (im *IdentityManager) AssignIdentity(pod *v1.Pod) (*Identity, error) {
// Generate identity based on pod labels and namespace
identity := &Identity{
ID: generateIdentityID(pod),
Namespace: pod.Namespace,
Labels: pod.Labels,
ServiceAccount: pod.Spec.ServiceAccountName,
}
// Add SPIFFE identity for mTLS
identity.SPIFFE = fmt.Sprintf("spiffe://cluster.local/ns/%s/sa/%s",
pod.Namespace, pod.Spec.ServiceAccountName)
// Store identity in eBPF map
if err := im.updateIdentityMap(identity); err != nil {
return nil, fmt.Errorf("failed to update identity map: %w", err)
}
// Create CiliumIdentity CRD
ciliumIdentity := &ciliumv2.CiliumIdentity{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("identity-%d", identity.ID),
},
SecurityLabels: convertToSecurityLabels(identity.Labels),
}
_, err := im.ciliumClient.CiliumV2().CiliumIdentities().Create(
context.TODO(), ciliumIdentity, metav1.CreateOptions{})
return identity, err
}

Pattern 2: Runtime Security and Behavioral Analysis#

Detecting Container Escapes#

// Rust implementation using Aya for container escape detection
use aya_ebpf::{
macros::{lsm, map},
maps::HashMap,
programs::LsmContext,
};
#[map]
static mut CONTAINER_PROCESSES: HashMap<u32, ContainerInfo> =
HashMap::with_max_entries(10000, 0);
#[lsm(hook = "bprm_check_security")]
pub fn detect_container_escape(ctx: LsmContext) -> i32 {
match try_detect_escape(ctx) {
Ok(action) => action,
Err(_) => 0, // Allow on error
}
}
fn try_detect_escape(ctx: LsmContext) -> Result<i32, i64> {
let task = bpf_get_current_task();
let pid = bpf_get_current_pid_tgid() >> 32;
// Check if process is in a container
let container_info = unsafe { CONTAINER_PROCESSES.get(&pid) };
if let Some(info) = container_info {
// Get the binary being executed
let bprm: *const linux_binprm = ctx.arg(0);
let filename = unsafe {
bpf_probe_read_kernel_str((*bprm).filename)?
};
// Detection patterns
if is_escape_attempt(&filename, &info) {
// Alert on potential escape
let alert = ContainerEscapeAlert {
timestamp: bpf_ktime_get_ns(),
container_id: info.container_id,
pid,
filename,
escape_type: detect_escape_type(&filename),
};
SECURITY_ALERTS.output(&alert, 0)?;
// Optionally block the execution
if should_block_escape(&alert) {
return Ok(-EACCES);
}
}
}
Ok(0)
}
fn is_escape_attempt(filename: &str, container: &ContainerInfo) -> bool {
// Pattern 1: Accessing host binaries
if filename.starts_with("/host") || filename.contains("../") {
return true;
}
// Pattern 2: Known escape tools
const ESCAPE_TOOLS: &[&str] = &["nsenter", "setns", "unshare"];
for tool in ESCAPE_TOOLS {
if filename.contains(tool) {
return true;
}
}
// Pattern 3: Privileged operations in unprivileged container
if !container.privileged && is_privileged_binary(filename) {
return true;
}
false
}

Advanced Anomaly Detection#

# ML-based anomaly detection for container behavior
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
import joblib
class ContainerAnomalyDetector:
def __init__(self):
self.model = IsolationForest(
n_estimators=100,
contamination=0.01,
random_state=42
)
self.scaler = StandardScaler()
self.feature_extractors = {
'syscall_frequency': self.extract_syscall_features,
'network_behavior': self.extract_network_features,
'file_access': self.extract_file_features,
'process_behavior': self.extract_process_features,
}
def extract_features(self, events):
"""Extract behavioral features from eBPF events"""
features = []
for extractor_name, extractor_func in self.feature_extractors.items():
features.extend(extractor_func(events))
return np.array(features)
def extract_syscall_features(self, events):
"""Extract syscall-based features"""
syscall_events = [e for e in events if e['type'] == 'syscall']
# Feature 1: Syscall diversity
unique_syscalls = len(set(e['syscall_id'] for e in syscall_events))
# Feature 2: Rare syscall usage
rare_syscalls = ['ptrace', 'setns', 'pivot_root', 'mount']
rare_count = sum(1 for e in syscall_events
if e['syscall_name'] in rare_syscalls)
# Feature 3: Syscall frequency
syscall_rate = len(syscall_events) / max(1, events[-1]['timestamp'] - events[0]['timestamp'])
return [unique_syscalls, rare_count, syscall_rate]
def detect_anomalies(self, container_id, events):
"""Detect anomalies in container behavior"""
features = self.extract_features(events)
features_scaled = self.scaler.transform([features])
# Predict anomaly
is_anomaly = self.model.predict(features_scaled)[0] == -1
anomaly_score = self.model.score_samples(features_scaled)[0]
if is_anomaly:
return {
'container_id': container_id,
'is_anomaly': True,
'score': float(anomaly_score),
'detected_patterns': self.analyze_anomaly_patterns(events),
'recommendation': self.get_security_recommendation(events)
}
return None
def analyze_anomaly_patterns(self, events):
"""Identify specific anomaly patterns"""
patterns = []
# Check for cryptocurrency mining
if self.detect_crypto_mining(events):
patterns.append('crypto_mining')
# Check for lateral movement
if self.detect_lateral_movement(events):
patterns.append('lateral_movement')
# Check for data exfiltration
if self.detect_data_exfiltration(events):
patterns.append('data_exfiltration')
return patterns

Pattern 3: Service Mesh Security with eBPF#

Transparent mTLS and Encryption#

// eBPF program for transparent TLS interception
SEC("sk_msg")
int tls_intercept(struct sk_msg_md *msg) {
struct connection_info conn = {};
// Extract connection information
conn.src_ip = msg->remote_ip4;
conn.dst_ip = msg->local_ip4;
conn.src_port = bpf_ntohs(msg->remote_port);
conn.dst_port = bpf_ntohs(msg->local_port);
// Check if connection requires encryption
struct encryption_policy *policy = lookup_encryption_policy(&conn);
if (!policy) {
return SK_PASS; // No encryption required
}
// Mark for encryption offload
if (policy->mode == ENCRYPT_MODE_TRANSPARENT) {
// Set up transparent encryption
struct tls_context *tls_ctx = get_or_create_tls_context(&conn);
if (!tls_ctx) {
// Log failure and decide on policy
log_encryption_failure(&conn);
return policy->fail_open ? SK_PASS : SK_DROP;
}
// Apply encryption context
bpf_sk_msg_set_tls(msg, tls_ctx);
}
return SK_PASS;
}
// L7 protocol parsing and security
SEC("sk_skb/stream_parser")
int parse_l7_protocol(struct __sk_buff *skb) {
// Parse application layer protocol
struct l7_parser_state *state = get_parser_state(skb);
if (!state) {
// Initialize parser for new connection
state = init_l7_parser(skb);
}
// Detect protocol
enum l7_protocol proto = detect_protocol(skb, state);
switch (proto) {
case PROTO_HTTP:
return parse_http_security(skb, state);
case PROTO_GRPC:
return parse_grpc_security(skb, state);
case PROTO_KAFKA:
return parse_kafka_security(skb, state);
default:
return TC_ACT_OK;
}
}

API Gateway Security Patterns#

# Advanced API security with Cilium Service Mesh
apiVersion: cilium.io/v2
kind: CiliumEnvoyConfig
metadata:
name: api-gateway-security
spec:
services:
- name: api-gateway
namespace: production
resources:
- "@type": type.googleapis.com/envoy.config.listener.v3.Listener
name: api-security-listener
filter_chains:
- filters:
- name: envoy.filters.network.http_connection_manager
typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnectionManager
stat_prefix: api_security
route_config:
name: local_route
virtual_hosts:
- name: api_service
domains: ["*"]
routes:
- match:
prefix: "/api/"
route:
cluster: api-backend
rate_limits:
- actions:
- request_headers:
header_name: "x-api-key"
descriptor_key: "api_key"
timeout: 30s
http_filters:
# JWT Authentication
- name: envoy.filters.http.jwt_authn
typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.http.jwt_authn.v3.JwtAuthentication
providers:
oauth_provider:
issuer: "https://auth.company.com"
audiences:
- "api.company.com"
remote_jwks:
http_uri:
uri: "https://auth.company.com/.well-known/jwks.json"
cluster: auth-cluster
cache_duration:
seconds: 300
rules:
- match:
prefix: "/api/"
requires:
provider_name: "oauth_provider"
# WAF with ModSecurity
- name: envoy.filters.http.modsecurity
typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.http.modsecurity.v3.ModSecurity
rules: |
SecRuleEngine On
SecRule REQUEST_HEADERS:User-Agent "nikto|sqlmap|havij" \
"id:1001,\
phase:1,\
t:lowercase,\
deny,\
msg:'Malicious scanner detected'"
# API Rate Limiting
- name: envoy.filters.http.ratelimit
typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.http.ratelimit.v3.RateLimit
domain: api_rate_limit
stage: 0
rate_limit_service:
grpc_service:
envoy_grpc:
cluster_name: rate_limit_cluster
transport_api_version: V3
# Custom eBPF security filter
- name: envoy.filters.http.ebpf_security
typed_config:
"@type": type.googleapis.com/custom.ebpf.security.v3.Security
program_path: "/opt/ebpf/api_security.o"
security_rules:
- name: "sql_injection_detection"
enabled: true
- name: "api_abuse_detection"
enabled: true
config:
threshold: 100
window: 60s

Pattern 4: Multi-Cluster Security Mesh#

Cross-Cluster Identity Federation#

// Multi-cluster identity propagation
type MultiClusterIdentityManager struct {
clusters map[string]*ClusterClient
meshConfig *MeshConfiguration
spireClient spire.Client
}
func (m *MultiClusterIdentityManager) FederateIdentity(
ctx context.Context,
identity *WorkloadIdentity,
) error {
// Generate SPIFFE ID for workload
spiffeID := &spire.SPIFFEID{
TrustDomain: m.meshConfig.TrustDomain,
Path: fmt.Sprintf("/ns/%s/sa/%s/cluster/%s",
identity.Namespace,
identity.ServiceAccount,
identity.ClusterName,
),
}
// Register with SPIRE
entry := &spire.Entry{
SpiffeID: spiffeID.String(),
Selectors: []spire.Selector{
{Type: "k8s", Value: fmt.Sprintf("ns:%s", identity.Namespace)},
{Type: "k8s", Value: fmt.Sprintf("sa:%s", identity.ServiceAccount)},
{Type: "cluster", Value: identity.ClusterName},
},
FederatesWith: m.getFederatedDomains(identity),
}
if err := m.spireClient.CreateEntry(ctx, entry); err != nil {
return fmt.Errorf("failed to register SPIFFE ID: %w", err)
}
// Propagate identity to other clusters
for clusterName, client := range m.clusters {
if clusterName == identity.ClusterName {
continue // Skip origin cluster
}
// Check if cluster should receive this identity
if !m.shouldPropagateToCluster(identity, clusterName) {
continue
}
// Create remote identity
remoteIdentity := &RemoteWorkloadIdentity{
WorkloadIdentity: *identity,
OriginCluster: identity.ClusterName,
SPIFFEID: spiffeID.String(),
FederatedDomains: entry.FederatesWith,
}
if err := client.CreateRemoteIdentity(ctx, remoteIdentity); err != nil {
log.Printf("Failed to propagate identity to cluster %s: %v",
clusterName, err)
}
}
// Update eBPF maps across clusters
return m.updateGlobalIdentityMaps(identity, spiffeID)
}
// eBPF-based cross-cluster traffic validation
func (m *MultiClusterIdentityManager) InstallCrossClusterPolicy(
policy *CrossClusterNetworkPolicy,
) error {
// Generate eBPF program for policy
program := m.generatePolicyProgram(policy)
// Deploy to all affected clusters
for _, cluster := range policy.ApplicableClusters {
client := m.clusters[cluster]
// Load eBPF program
if err := client.LoadeBPFProgram(program); err != nil {
return fmt.Errorf("failed to load program in cluster %s: %w",
cluster, err)
}
// Attach to cluster ingress/egress points
attachPoints := []string{
"cluster-ingress",
"cluster-egress",
"service-mesh-proxy",
}
for _, point := range attachPoints {
if err := client.AttacheBPFProgram(program.Name, point); err != nil {
return fmt.Errorf("failed to attach at %s: %w", point, err)
}
}
}
return nil
}

Pattern 5: Observability-Driven Security#

Distributed Tracing with Security Context#

// Security-aware distributed tracing
use aya_ebpf::{
macros::{uprobe, map},
maps::HashMap,
programs::UProbeContext,
};
#[repr(C)]
struct SecurityTrace {
trace_id: [u8; 16],
span_id: [u8; 8],
parent_span_id: [u8; 8],
timestamp: u64,
duration: u64,
security_context: SecurityContext,
risk_score: u32,
anomalies: u32,
}
#[repr(C)]
struct SecurityContext {
identity_id: u32,
permission_mask: u64,
encryption_status: u8,
authentication_method: u8,
threat_indicators: u32,
}
#[map]
static mut SECURITY_TRACES: HashMap<[u8; 16], SecurityTrace> =
HashMap::with_max_entries(100000, 0);
#[uprobe]
pub fn trace_security_context(ctx: UProbeContext) -> i32 {
match try_trace_security(ctx) {
Ok(_) => 0,
Err(_) => 0,
}
}
fn try_trace_security(ctx: UProbeContext) -> Result<(), i64> {
// Extract trace context from function arguments
let trace_ctx: *const TraceContext = ctx.arg(0)?;
let trace_id = unsafe { (*trace_ctx).trace_id };
// Get current security context
let security_ctx = get_current_security_context()?;
// Calculate risk score based on various factors
let risk_score = calculate_risk_score(&security_ctx)?;
// Detect anomalies
let anomalies = detect_trace_anomalies(&trace_id, &security_ctx)?;
// Create security trace entry
let trace = SecurityTrace {
trace_id,
span_id: generate_span_id(),
parent_span_id: unsafe { (*trace_ctx).parent_span_id },
timestamp: bpf_ktime_get_ns(),
duration: 0, // Will be updated on span end
security_context: security_ctx,
risk_score,
anomalies,
};
// Store trace
unsafe {
SECURITY_TRACES.insert(&trace_id, &trace, 0)?;
}
// Alert on high-risk traces
if risk_score > RISK_THRESHOLD || anomalies > 0 {
emit_security_alert(&trace)?;
}
Ok(())
}
fn calculate_risk_score(ctx: &SecurityContext) -> Result<u32, i64> {
let mut score = 0u32;
// Factor 1: Authentication strength
match ctx.authentication_method {
AUTH_NONE => score += 50,
AUTH_BASIC => score += 30,
AUTH_TOKEN => score += 10,
AUTH_MTLS => score += 0,
_ => score += 20,
}
// Factor 2: Encryption status
if ctx.encryption_status == 0 {
score += 40;
}
// Factor 3: Permission scope
let permission_count = ctx.permission_mask.count_ones();
if permission_count > 10 {
score += 20; // Too many permissions
}
// Factor 4: Known threat indicators
if ctx.threat_indicators > 0 {
score += ctx.threat_indicators * 10;
}
Ok(score.min(100))
}

Real-Time Security Dashboards#

// Real-time security metrics aggregation
interface SecurityMetrics {
timestamp: number;
cluster: string;
namespace: string;
metrics: {
requests_per_second: number;
error_rate: number;
latency_p99: number;
security_events: number;
blocked_requests: number;
authentication_failures: number;
encryption_coverage: number;
identity_violations: number;
};
anomalies: AnomalyEvent[];
}
class SecurityObservabilityService {
private metricsBuffer: Map<string, SecurityMetrics[]> = new Map();
private ebpfClient: EBPFClient;
private prometheusClient: PrometheusClient;
async collectSecurityMetrics(): Promise<void> {
// Collect from eBPF maps
const ebpfMetrics = await this.ebpfClient.getSecurityMetrics();
// Aggregate by namespace
const aggregated = this.aggregateMetrics(ebpfMetrics);
// Detect anomalies
for (const [key, metrics] of aggregated) {
const anomalies = await this.detectAnomalies(key, metrics);
if (anomalies.length > 0) {
metrics.anomalies = anomalies;
await this.handleSecurityAnomalies(anomalies);
}
}
// Export to Prometheus
await this.exportMetrics(aggregated);
// Update real-time dashboard
await this.updateDashboard(aggregated);
}
private async detectAnomalies(
key: string,
metrics: SecurityMetrics
): Promise<AnomalyEvent[]> {
const anomalies: AnomalyEvent[] = [];
// Get baseline from historical data
const baseline = await this.getBaseline(key);
// Check for request spike
if (metrics.metrics.requests_per_second > baseline.rps_p99 * 2) {
anomalies.push({
type: "REQUEST_SPIKE",
severity: "HIGH",
value: metrics.metrics.requests_per_second,
baseline: baseline.rps_p99,
timestamp: Date.now(),
});
}
// Check for authentication failures
if (metrics.metrics.authentication_failures > baseline.auth_failures_p95) {
anomalies.push({
type: "AUTH_FAILURE_SPIKE",
severity: "CRITICAL",
value: metrics.metrics.authentication_failures,
baseline: baseline.auth_failures_p95,
timestamp: Date.now(),
});
}
// Check for encryption coverage drop
if (metrics.metrics.encryption_coverage < 0.95) {
anomalies.push({
type: "ENCRYPTION_COVERAGE_LOW",
severity: "HIGH",
value: metrics.metrics.encryption_coverage,
baseline: 0.95,
timestamp: Date.now(),
});
}
return anomalies;
}
private async handleSecurityAnomalies(
anomalies: AnomalyEvent[]
): Promise<void> {
for (const anomaly of anomalies) {
// Generate alert
await this.alertingService.sendAlert({
title: `Security Anomaly Detected: ${anomaly.type}`,
severity: anomaly.severity,
description: `Detected ${anomaly.type} with value ${anomaly.value} (baseline: ${anomaly.baseline})`,
runbook: this.getRunbookUrl(anomaly.type),
actions: this.getAutomatedActions(anomaly),
});
// Trigger automated response if configured
if (this.config.enableAutoResponse) {
await this.executeAutomatedResponse(anomaly);
}
}
}
}

Pattern 6: Compliance and Audit Automation#

Continuous Compliance Monitoring#

// CIS Kubernetes Benchmark compliance checking with eBPF
type ComplianceMonitor struct {
ebpfPrograms map[string]*ebpf.Program
auditLog *AuditLogger
violations chan ComplianceViolation
}
func (cm *ComplianceMonitor) MonitorCISCompliance() error {
// CIS 4.2.1 - Ensure that the --anonymous-auth argument is set to false
if err := cm.monitorAnonymousAuth(); err != nil {
return err
}
// CIS 4.2.2 - Ensure that the --basic-auth-file argument is not set
if err := cm.monitorBasicAuth(); err != nil {
return err
}
// CIS 4.2.6 - Ensure that the --streaming-connection-idle-timeout
if err := cm.monitorStreamingTimeout(); err != nil {
return err
}
// CIS 5.1.1 - Ensure that the cluster-admin role is only used where required
if err := cm.monitorClusterAdminUsage(); err != nil {
return err
}
// CIS 5.3.2 - Ensure that all Namespaces have Network Policies defined
if err := cm.monitorNetworkPolicies(); err != nil {
return err
}
return nil
}
func (cm *ComplianceMonitor) monitorClusterAdminUsage() error {
// eBPF program to monitor cluster-admin role bindings
prog := cm.ebpfPrograms["monitor_rbac"]
// Attach to kube-apiserver audit points
if err := prog.Attach(); err != nil {
return err
}
// Process events
go func() {
for {
var event RBACEvent
if err := prog.ReadEvent(&event); err != nil {
continue
}
if event.Role == "cluster-admin" {
violation := ComplianceViolation{
Rule: "CIS 5.1.1",
Severity: "HIGH",
Description: "cluster-admin role used",
Resource: event.Subject,
Evidence: map[string]interface{}{
"user": event.User,
"action": event.Action,
"timestamp": event.Timestamp,
},
}
cm.violations <- violation
cm.auditLog.LogViolation(violation)
}
}
}()
return nil
}
// Automated remediation
func (cm *ComplianceMonitor) EnableAutoRemediation() {
go func() {
for violation := range cm.violations {
switch violation.Rule {
case "CIS 5.3.2": // Missing network policies
cm.autoCreateNetworkPolicy(violation)
case "CIS 5.1.1": // cluster-admin usage
cm.alertSecurityTeam(violation)
case "CIS 4.2.6": // Streaming timeout
cm.updateAPIServerConfig(violation)
}
}
}()
}

Production Deployment Strategies#

GitOps-Driven Security Policies#

# Argo CD Application for security policies
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: security-policies
namespace: argocd
spec:
project: security
source:
repoURL: https://git.company.com/k8s-security
targetRevision: main
path: policies/production
helm:
valueFiles:
- values-prod.yaml
parameters:
- name: ebpf.enabled
value: "true"
- name: enforcement.mode
value: "strict"
destination:
server: https://kubernetes.default.svc
namespace: kube-system
syncPolicy:
automated:
prune: false # Don't auto-delete security policies
selfHeal: true
syncOptions:
- CreateNamespace=false
- PruneLast=true
retry:
limit: 5
backoff:
duration: 5s
factor: 2
maxDuration: 3m
# Security-specific health checks
health:
- name: ebpf-programs
check: |
all(
.status.programs[].state == "attached" &&
.status.programs[].verified == true
)
- name: policy-coverage
check: |
.status.coverage.percentage >= 95

Performance Optimization for Scale#

// Optimized eBPF program for high-scale environments
#define MAX_ENTRIES 1000000
#define BATCH_SIZE 64
// Use per-CPU maps for statistics
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, struct statistics);
} stats_map SEC(".maps");
// LRU hash for connection tracking
struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, struct connection_key);
__type(value, struct connection_state);
} conn_map SEC(".maps");
// Ring buffer for high-throughput event streaming
struct {
__uint(type, BPF_MAP_TYPE_RINGBUF);
__uint(max_entries, 16 * 1024 * 1024); // 16MB
} events_rb SEC(".maps");
SEC("cgroup/skb")
int optimized_filter(struct __sk_buff *skb) {
// Early exit for non-relevant traffic
if (skb->protocol != bpf_htons(ETH_P_IP))
return TC_ACT_OK;
// Batch processing hint
#pragma unroll
for (int i = 0; i < BATCH_SIZE; i++) {
// Process multiple packets if available
if (!process_packet_batch(skb, i))
break;
}
// Update per-CPU statistics
u32 key = 0;
struct statistics *stats = bpf_map_lookup_elem(&stats_map, &key);
if (stats) {
__sync_fetch_and_add(&stats->packets, 1);
__sync_fetch_and_add(&stats->bytes, skb->len);
}
return TC_ACT_OK;
}

Monitoring and Alerting#

Comprehensive Security Metrics#

# Prometheus recording rules for eBPF security metrics
groups:
- name: ebpf_security_metrics
interval: 30s
rules:
# Policy enforcement rate
- record: security:policy:enforcement_rate
expr: |
rate(ebpf_policy_decisions_total[5m])
# Security event detection rate
- record: security:events:detection_rate
expr: |
sum by (event_type, severity) (
rate(ebpf_security_events_total[5m])
)
# Identity verification success rate
- record: security:identity:verification_success_rate
expr: |
sum(rate(ebpf_identity_verifications_total{result="success"}[5m]))
/
sum(rate(ebpf_identity_verifications_total[5m]))
# Encryption coverage
- record: security:encryption:coverage
expr: |
sum(ebpf_encrypted_connections)
/
sum(ebpf_total_connections)
# Performance impact
- record: security:performance:overhead_percentage
expr: |
(
sum(rate(ebpf_processing_time_seconds[5m]))
/
sum(rate(request_duration_seconds[5m]))
) * 100
- name: ebpf_security_alerts
rules:
- alert: HighSecurityEventRate
expr: security:events:detection_rate{severity="critical"} > 10
for: 2m
labels:
severity: critical
component: ebpf_security
annotations:
summary: High rate of critical security events detected
description: "{{ $value }} critical events per second detected"
- alert: PolicyEnforcementFailure
expr: |
rate(ebpf_policy_enforcement_errors_total[5m]) > 0.01
for: 5m
labels:
severity: warning
annotations:
summary: eBPF policy enforcement errors detected

Conclusion#

eBPF has fundamentally transformed cloud-native security by providing kernel-level visibility and enforcement without the overhead of traditional approaches. The patterns presented here represent production-proven approaches for implementing comprehensive security in Kubernetes environments.

Key takeaways:

  1. Identity-based security provides stronger guarantees than IP-based approaches
  2. Runtime behavioral analysis catches threats that static analysis misses
  3. Transparent encryption can be implemented without application changes
  4. Cross-cluster security requires careful identity federation
  5. Observability and security are increasingly converging
  6. Compliance automation reduces manual audit burden

As cloud-native architectures continue to evolve, eBPF will remain at the forefront of innovation, enabling security teams to protect increasingly complex environments without sacrificing performance or agility.


Additional Resources#


This completes our comprehensive eBPF security series. Continue exploring the rapidly evolving eBPF ecosystem for the latest innovations in cloud-native security.

Advanced eBPF Security Patterns for Cloud-Native Kubernetes Environments
https://mranv.pages.dev/posts/ebpf-cloud-native-security-patterns/
Author
Anubhav Gain
Published at
2025-08-02
License
CC BY-NC-SA 4.0