Introducing The eBPF Agent: A No-Code Approach for Cloud-Native Observability
Microservices architecture has become the dominant approach for building scalable, resilient, and flexible applications. However, monitoring these microservices presents unique challenges due to their distributed nature, resource constraints, enterprise scale, and dynamic environments like Kubernetes clusters. Traditional in-process application agents often introduce significant overhead through intrusive instrumentation and frequent polling.
Broadcom’s innovative eBPF agent offers a revolutionary solution: lightweight, powerful, and non-intrusive monitoring that addresses the critical needs of modern cloud-native environments.
The Microservices Monitoring Challenge
graph TB subgraph "Traditional Monitoring Challenges" subgraph "Microservices Architecture" MS1[Service A] --> DB1[Database] MS2[Service B] --> MS1 MS3[Service C] --> MS2 MS4[Service D] --> MS3 end
subgraph "Monitoring Problems" P1[Heavy Agent Overhead] --> Impact[Performance Impact] P2[Intrusive Instrumentation] --> Impact P3[Resource Constraints] --> Impact P4[Dynamic Scaling] --> Impact P5[Language Diversity] --> Impact end
Impact --> Results[Monitoring Blind Spots] end
style P1 fill:#ffcdd2 style P2 fill:#ffcdd2 style P3 fill:#ffcdd2 style Impact fill:#ffcdd2 style Results fill:#ffcdd2
Key Challenges in Cloud-Native Monitoring
- Resource Constraints: Containers have limited CPU and memory allocations
- Dynamic Environments: Kubernetes pods scale up/down rapidly
- Distributed Complexity: Transactions span multiple services and nodes
- Language Diversity: Mixed technology stacks require different monitoring approaches
- Performance Sensitivity: Any monitoring overhead affects application performance
Understanding eBPF: The Magic Behind Modern Observability
eBPF (Extended Berkeley Packet Filter) acts as a magical lens into the Linux kernel, providing unprecedented visibility into system behavior without requiring code changes or application restarts.
graph LR subgraph "eBPF Capabilities" subgraph "System Monitoring" S1[System Calls] --> Crystal[eBPF Magic Lens] S2[Network Traffic] --> Crystal S3[Process Behavior] --> Crystal end
subgraph "Granular Insights" Crystal --> G1[Process-by-Process Tracing] Crystal --> G2[Container-Level Metrics] Crystal --> G3[Application Flow Topology] end
subgraph "Security & Performance" Crystal --> Security[Runtime Security Auditing] Crystal --> Performance[Performance Analytics] Crystal --> Incident[Incident Response] end end
style Crystal fill:#e1f5fe style G1 fill:#c8e6c9 style G2 fill:#c8e6c9 style G3 fill:#c8e6c9
eBPF’s Core Advantages
- System-Wide Visibility: Monitor all processes and containers on a host
- Real-Time Insights: Capture events as they happen in the kernel
- Non-Intrusive: No application modifications required
- High Performance: Minimal overhead with kernel-level execution
- Universal Compatibility: Works with any programming language or framework
In-Process vs. eBPF Agents: A Comprehensive Comparison
graph TB subgraph "Agent Architecture Comparison" subgraph "In-Process Agent" IP1[Agent Inside Application] --> IP2[User-Space Execution] IP2 --> IP3[Application-Specific Monitoring] IP3 --> IP4[Higher Overhead] IP4 --> IP5[Intrusive Instrumentation] end
subgraph "eBPF Agent" EB1[Agent Outside Application] --> EB2[Kernel-Space Execution] EB2 --> EB3[System-Wide Monitoring] EB3 --> EB4[Low Overhead] EB4 --> EB5[Non-Intrusive Operation] end end
style IP4 fill:#ffcdd2 style IP5 fill:#ffcdd2 style EB4 fill:#c8e6c9 style EB5 fill:#c8e6c9
Detailed Feature Comparison
Feature | In-Process Agent | eBPF Agent |
---|---|---|
Execution Space | Inside application (user-space) | Outside application (kernel-space) |
Performance Impact | Higher overhead; intrusive | Low overhead; non-intrusive |
Monitoring Scope | Application-specific; limited | System-wide; application-agnostic |
Deployment | Requires code changes | No code changes needed |
Language Support | Language-specific agents | Universal language support |
Scaling | Scales with application instances | Scales with infrastructure nodes |
Resource Usage | Per-application overhead | Shared infrastructure overhead |
Maintenance | Application lifecycle dependent | Infrastructure lifecycle dependent |
DX Operational Observability (DX O2): The Complete Solution
Broadcom’s DX Operational Observability helps teams manage the explosive growth in monitoring data, infrastructure complexity, and business demands by providing end-to-end observability across the entire digital delivery chain.
DX O2 Architecture Overview
graph TB subgraph "DX Operational Observability Platform" subgraph "Data Collection Layer" UMA[Universal Monitoring Agent] --> eBPF[eBPF Agent] UMA --> Traditional[Traditional Agents] UMA --> Synthetic[Synthetic Monitoring] end
subgraph "Processing Layer" eBPF --> Correlation[Data Correlation Engine] Traditional --> Correlation Synthetic --> Correlation Correlation --> AI[AI/ML Analytics] end
subgraph "Insights Layer" AI --> Dashboards[Real-time Dashboards] AI --> Alerts[Intelligent Alerting] AI --> Recommendations[Actionable Recommendations] end
subgraph "Integration Layer" Dashboards --> APIs[REST APIs] Alerts --> Webhooks[Webhook Integration] Recommendations --> Automation[Automation Workflows] end end
style eBPF fill:#e1f5fe style AI fill:#f3e5f5 style Dashboards fill:#e8f5e8
The eBPF Agent: Revolutionary Features
1. Dynamic Instrumentation
The eBPF agent provides dynamic instrumentation by inserting probes into the running system without disruption:
// Example: Dynamic HTTP request monitoring#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_tracing.h>
// HTTP request tracking structurestruct http_request { __u32 pid; __u32 tid; __u64 timestamp; __u32 container_id; __u16 port; __u8 method; // GET=1, POST=2, etc. char host[64]; char path[128];};
// Ring buffer for event streamingstruct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 1024 * 1024);} http_events SEC(".maps");
// Hook into socket operations for HTTP detectionSEC("uprobe/connect")int trace_connect(struct pt_regs *ctx) { struct sockaddr *addr = (struct sockaddr *)PT_REGS_PARM2(ctx);
if (!addr) return 0;
// Extract connection information __u32 pid = bpf_get_current_pid_tgid() >> 32; __u64 timestamp = bpf_ktime_get_ns();
// Create HTTP request event struct http_request *event = bpf_ringbuf_reserve(&http_events, sizeof(*event), 0); if (!event) return 0;
event->pid = pid; event->tid = (__u32)bpf_get_current_pid_tgid(); event->timestamp = timestamp; event->container_id = get_container_id();
// Extract port information if (addr->sa_family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *)addr; event->port = bpf_ntohs(BPF_CORE_READ(sin, sin_port)); }
bpf_ringbuf_submit(event, 0); return 0;}
// Helper function to get container ID from cgroupstatic __u32 get_container_id() { struct task_struct *task = (struct task_struct *)bpf_get_current_task(); // Simplified container ID extraction return bpf_get_current_pid_tgid() >> 32;}
char _license[] SEC("license") = "GPL";
2. Kernel-Level Metrics Collection
The eBPF agent leverages Linux kernel-level API calls that are consistent across all hosts, ensuring uniform collection of observability metrics:
graph TB subgraph "Three Key Performance Indicators" KPI1[Responses per Interval] --> Metrics[Application Health KPIs] KPI2[Errors per Interval] --> Metrics KPI3[Average Response Time] --> Metrics
subgraph "Collection Method" Metrics --> Kernel[Kernel-Level API Calls] Kernel --> Consistent[Consistent Across All Hosts] Consistent --> Uniform[Uniform Metric Collection] end
subgraph "Benefits" Uniform --> Reliability[Reliable Monitoring] Uniform --> Correlation[Cross-Host Correlation] Uniform --> Scalability[Massive Scale Support] end end
style Metrics fill:#e1f5fe style Uniform fill:#c8e6c9 style Reliability fill:#c8e6c9
3. Language-Agnostic Broad Support
graph TB subgraph "Universal Language Support" subgraph "Supported Languages" L1[Java Applications] --> eBPF[eBPF Agent] L2[.NET Applications] --> eBPF L3[PHP Applications] --> eBPF L4[Node.js Applications] --> eBPF L5[Python Applications] --> eBPF L6[Go Applications] --> eBPF L7[C++ Applications] --> eBPF end
subgraph "Monitoring Capabilities" eBPF --> Topology[Application Flow Topology] eBPF --> Correlation[Full Stack Correlation] eBPF --> Insights[Intuitive Insights] end
subgraph "Business Value" Topology --> StandardMonitoring[Standardized Monitoring] Correlation --> ReducedComplexity[Reduced Complexity] Insights --> FasterTTR[Faster Time to Resolution] end end
style eBPF fill:#e1f5fe style StandardMonitoring fill:#c8e6c9 style ReducedComplexity fill:#c8e6c9 style FasterTTR fill:#c8e6c9
The eBPF agent natively supports applications built using:
- Java: Enterprise applications, Spring Boot, microservices
- .NET: Windows and Linux .NET applications
- PHP: Web applications, WordPress, Laravel
- Node.js: JavaScript backend services, Express.js
- Python: Django, Flask, FastAPI applications
- Go: Cloud-native services, Kubernetes operators
- C++: High-performance applications, system services
4. Near-Zero Overhead Architecture
graph LR subgraph "Zero Overhead Design" subgraph "Traditional Monitoring" T1[In-Process Agent] --> T2[Application Pod] T2 --> T3[Resource Competition] T3 --> T4[Performance Impact] end
subgraph "eBPF Monitoring" E1[eBPF Agent] --> E2[Outside Application Pod] E2 --> E3[Dedicated Resources] E3 --> E4[No Performance Impact] end end
style T3 fill:#ffcdd2 style T4 fill:#ffcdd2 style E3 fill:#c8e6c9 style E4 fill:#c8e6c9
The agent operates outside the application pod, minimizing resource competition while providing comprehensive insights.
Universal Monitoring Agent (UMA) Architecture
The Universal Monitoring Agent features a microservices agent that runs as part of UMA daemonset pods, acting as a single agent deployment that automatically discovers and monitors Kubernetes and Red Hat OpenShift environments.
UMA Deployment Architecture
# Universal Monitoring Agent DaemonSetapiVersion: apps/v1kind: DaemonSetmetadata: name: dx-uma-ebpf-agent namespace: dx-observabilityspec: selector: matchLabels: app: dx-uma-ebpf-agent template: metadata: labels: app: dx-uma-ebpf-agent spec: hostNetwork: true hostPID: true serviceAccountName: dx-uma-ebpf-agent containers: - name: app-container-monitor image: broadcom/dx-uma-ebpf:latest securityContext: privileged: true capabilities: add: ["SYS_ADMIN", "BPF", "SYS_PTRACE"] env: - name: DX_TENANT_ID valueFrom: secretKeyRef: name: dx-credentials key: tenant-id - name: DX_API_TOKEN valueFrom: secretKeyRef: name: dx-credentials key: api-token - name: CLUSTER_NAME value: "production-cluster" - name: NODE_NAME valueFrom: fieldRef: fieldPath: spec.nodeName resources: requests: cpu: 100m memory: 128Mi limits: cpu: 500m memory: 512Mi volumeMounts: - name: debugfs mountPath: /sys/kernel/debug - name: tracefs mountPath: /sys/kernel/tracing - name: bpf-maps mountPath: /sys/fs/bpf - name: proc mountPath: /host/proc readOnly: true - name: sys mountPath: /host/sys readOnly: true volumes: - name: debugfs hostPath: path: /sys/kernel/debug - name: tracefs hostPath: path: /sys/kernel/tracing - name: bpf-maps hostPath: path: /sys/fs/bpf - name: proc hostPath: path: /proc - name: sys hostPath: path: /sys tolerations: - operator: Exists effect: NoSchedule---apiVersion: v1kind: ServiceAccountmetadata: name: dx-uma-ebpf-agent namespace: dx-observability---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRolemetadata: name: dx-uma-ebpf-agentrules: - apiGroups: [""] resources: ["pods", "nodes", "services", "endpoints"] verbs: ["get", "list", "watch"] - apiGroups: ["apps"] resources: ["deployments", "replicasets", "daemonsets"] verbs: ["get", "list", "watch"]---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata: name: dx-uma-ebpf-agentroleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: dx-uma-ebpf-agentsubjects: - kind: ServiceAccount name: dx-uma-ebpf-agent namespace: dx-observability
Automatic Discovery and Monitoring
// UMA automatic discovery implementationpackage main
import ( "context" "fmt" "log" "time"
"k8s.io/client-go/kubernetes" "k8s.io/client-go/rest" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1")
type UMADiscoveryAgent struct { k8sClient kubernetes.Interface ebpfAgent *eBPFAgent discoveredPods map[string]*PodInfo ticker *time.Ticker}
type PodInfo struct { Name string Namespace string ContainerID string Language string Ports []int32 Labels map[string]string LastSeen time.Time}
func NewUMADiscoveryAgent() (*UMADiscoveryAgent, error) { // Create Kubernetes client from in-cluster config config, err := rest.InClusterConfig() if err != nil { return nil, fmt.Errorf("creating k8s config: %w", err) }
clientset, err := kubernetes.NewForConfig(config) if err != nil { return nil, fmt.Errorf("creating k8s client: %w", err) }
ebpfAgent, err := NeweBPFAgent() if err != nil { return nil, fmt.Errorf("creating eBPF agent: %w", err) }
return &UMADiscoveryAgent{ k8sClient: clientset, ebpfAgent: ebpfAgent, discoveredPods: make(map[string]*PodInfo), ticker: time.NewTicker(30 * time.Second), }, nil}
func (ua *UMADiscoveryAgent) Start(ctx context.Context) { log.Println("Starting UMA Discovery Agent...")
// Initial discovery ua.discoverPods()
// Start eBPF monitoring go ua.ebpfAgent.StartMonitoring(ctx)
// Periodic discovery for { select { case <-ctx.Done(): return case <-ua.ticker.C: ua.discoverPods() } }}
func (ua *UMADiscoveryAgent) discoverPods() { pods, err := ua.k8sClient.CoreV1().Pods("").List(context.TODO(), metav1.ListOptions{}) if err != nil { log.Printf("Error listing pods: %v", err) return }
currentPods := make(map[string]*PodInfo)
for _, pod := range pods.Items { if pod.Status.Phase != "Running" { continue }
podKey := fmt.Sprintf("%s/%s", pod.Namespace, pod.Name)
podInfo := &PodInfo{ Name: pod.Name, Namespace: pod.Namespace, Labels: pod.Labels, LastSeen: time.Now(), }
// Extract container information for _, container := range pod.Spec.Containers { // Detect language from image or labels podInfo.Language = ua.detectLanguage(container.Image, pod.Labels)
// Extract ports for _, port := range container.Ports { podInfo.Ports = append(podInfo.Ports, port.ContainerPort) } }
// Get container ID from status if len(pod.Status.ContainerStatuses) > 0 { containerID := pod.Status.ContainerStatuses[0].ContainerID podInfo.ContainerID = ua.extractContainerID(containerID) }
currentPods[podKey] = podInfo
// Check if this is a new pod if _, exists := ua.discoveredPods[podKey]; !exists { log.Printf("Discovered new pod: %s (Language: %s)", podKey, podInfo.Language) ua.configureBPFMonitoring(podInfo) } }
// Remove pods that no longer exist for podKey, podInfo := range ua.discoveredPods { if _, exists := currentPods[podKey]; !exists { log.Printf("Pod removed: %s", podKey) ua.removeBPFMonitoring(podInfo) } }
ua.discoveredPods = currentPods
log.Printf("Discovery complete: monitoring %d pods", len(currentPods))}
func (ua *UMADiscoveryAgent) detectLanguage(image string, labels map[string]string) string { // Check labels first if lang, exists := labels["app.language"]; exists { return lang }
// Detect from image name imageLanguages := map[string]string{ "java": "java", "openjdk": "java", "node": "nodejs", "python": "python", "golang": "go", "go": "go", "dotnet": "dotnet", "php": "php", "nginx": "web", "apache": "web", }
for pattern, language := range imageLanguages { if strings.Contains(strings.ToLower(image), pattern) { return language } }
return "unknown"}
func (ua *UMADiscoveryAgent) configureBPFMonitoring(podInfo *PodInfo) { config := &eBPFMonitoringConfig{ ContainerID: podInfo.ContainerID, Language: podInfo.Language, Ports: podInfo.Ports, Labels: podInfo.Labels, }
ua.ebpfAgent.AddMonitoringTarget(config)}
func (ua *UMADiscoveryAgent) removeBPFMonitoring(podInfo *PodInfo) { ua.ebpfAgent.RemoveMonitoringTarget(podInfo.ContainerID)}
func (ua *UMADiscoveryAgent) extractContainerID(fullID string) string { // Extract short container ID from full container ID // Format: docker://1a2b3c4d5e6f... parts := strings.Split(fullID, "://") if len(parts) == 2 && len(parts[1]) >= 12 { return parts[1][:12] } return fullID}
Advanced eBPF Monitoring Features
Application Flow Topology
The eBPF agent automatically constructs application flow topology by tracking inter-service communications:
// Application Flow Topology Constructiontype ApplicationFlowTracker struct { serviceMap map[string]*ServiceNode connections map[string]*ConnectionFlow topology *TopologyGraph}
type ServiceNode struct { Name string Namespace string Language string Version string Endpoints []string Dependencies []string Dependents []string Metrics *ServiceMetrics}
type ConnectionFlow struct { Source string Destination string Protocol string Port int32 RequestRate float64 ErrorRate float64 Latency time.Duration LastSeen time.Time}
type ServiceMetrics struct { RequestsPerSecond float64 ErrorsPerSecond float64 AverageLatency time.Duration P95Latency time.Duration P99Latency time.Duration}
func (aft *ApplicationFlowTracker) ProcessNetworkEvent(event *NetworkEvent) { sourceService := aft.getOrCreateService(event.SourcePod) destService := aft.getOrCreateService(event.DestinationPod)
// Create or update connection flow flowKey := fmt.Sprintf("%s->%s:%d", sourceService.Name, destService.Name, event.DestPort)
flow, exists := aft.connections[flowKey] if !exists { flow = &ConnectionFlow{ Source: sourceService.Name, Destination: destService.Name, Protocol: event.Protocol, Port: event.DestPort, } aft.connections[flowKey] = flow
// Update service dependencies sourceService.Dependencies = append(sourceService.Dependencies, destService.Name) destService.Dependents = append(destService.Dependents, sourceService.Name) }
// Update flow metrics flow.RequestRate = aft.calculateRequestRate(flowKey) flow.ErrorRate = aft.calculateErrorRate(flowKey) flow.Latency = aft.calculateLatency(flowKey) flow.LastSeen = time.Now()
// Update topology graph aft.updateTopologyGraph()}
func (aft *ApplicationFlowTracker) updateTopologyGraph() { // Generate updated topology for visualization topology := &TopologyGraph{ Nodes: make([]*TopologyNode, 0, len(aft.serviceMap)), Edges: make([]*TopologyEdge, 0, len(aft.connections)), }
// Add service nodes for _, service := range aft.serviceMap { node := &TopologyNode{ ID: service.Name, Label: service.Name, Language: service.Language, Metrics: service.Metrics, Status: aft.calculateServiceHealth(service), } topology.Nodes = append(topology.Nodes, node) }
// Add connection edges for _, connection := range aft.connections { edge := &TopologyEdge{ Source: connection.Source, Destination: connection.Destination, Protocol: connection.Protocol, Metrics: connection, Health: aft.calculateConnectionHealth(connection), } topology.Edges = append(topology.Edges, edge) }
aft.topology = topology}
Real-Time Performance Analytics
// Real-time performance analytics enginetype PerformanceAnalytics struct { metricsBuffer *RingBuffer aggregator *MetricsAggregator anomalyDetector *AnomalyDetector alertManager *AlertManager}
type MetricsAggregator struct { windows map[time.Duration]*TimeWindow}
type TimeWindow struct { Duration time.Duration Buckets []*MetricsBucket Current int StartTime time.Time}
type MetricsBucket struct { Timestamp time.Time RequestCount int64 ErrorCount int64 TotalLatency time.Duration MinLatency time.Duration MaxLatency time.Duration LatencyHistogram map[time.Duration]int64}
func (pa *PerformanceAnalytics) ProcessMetric(metric *PerformanceMetric) { // Add to buffer for real-time processing pa.metricsBuffer.Add(metric)
// Aggregate into time windows pa.aggregator.AddMetric(metric)
// Check for anomalies if anomaly := pa.anomalyDetector.Detect(metric); anomaly != nil { pa.alertManager.TriggerAlert(anomaly) }
// Update real-time dashboards pa.updateRealTimeDashboard(metric)}
func (ma *MetricsAggregator) AddMetric(metric *PerformanceMetric) { for duration, window := range ma.windows { bucket := window.GetCurrentBucket()
// Update bucket metrics bucket.RequestCount++ if metric.IsError { bucket.ErrorCount++ }
// Update latency statistics bucket.TotalLatency += metric.Latency if bucket.MinLatency == 0 || metric.Latency < bucket.MinLatency { bucket.MinLatency = metric.Latency } if metric.Latency > bucket.MaxLatency { bucket.MaxLatency = metric.Latency }
// Update latency histogram latencyBucket := ma.getLatencyBucket(metric.Latency) bucket.LatencyHistogram[latencyBucket]++
// Rotate window if needed if time.Since(bucket.Timestamp) >= duration/time.Duration(len(window.Buckets)) { window.RotateBucket() } }}
Intelligent Alerting System
// Intelligent alerting with ML-based anomaly detectiontype IntelligentAlerting struct { baselineCalculator *BaselineCalculator anomalyDetector *MLAnomalyDetector alertPolicies map[string]*AlertPolicy notificationQueue chan *Alert}
type AlertPolicy struct { Name string Conditions []AlertCondition Severity AlertSeverity Cooldown time.Duration NotificationChannels []string}
type AlertCondition struct { Metric string Operator string Threshold float64 Duration time.Duration Aggregation string}
type MLAnomalyDetector struct { models map[string]*AnomalyModel}
type AnomalyModel struct { ModelType string Parameters map[string]float64 Confidence float64 LastTrained time.Time}
func (ia *IntelligentAlerting) EvaluateMetrics(metrics []*PerformanceMetric) { for _, metric := range metrics { // Calculate baseline baseline := ia.baselineCalculator.GetBaseline(metric.Service, metric.MetricType)
// Detect anomalies using ML anomaly := ia.anomalyDetector.DetectAnomaly(metric, baseline)
if anomaly != nil && anomaly.Confidence > 0.8 { // Check alert policies for _, policy := range ia.alertPolicies { if ia.evaluatePolicy(policy, metric, anomaly) { alert := &Alert{ PolicyName: policy.Name, Severity: policy.Severity, Service: metric.Service, Metric: metric, Anomaly: anomaly, Timestamp: time.Now(), Description: ia.generateAlertDescription(metric, anomaly), }
ia.notificationQueue <- alert } } } }}
func (ia *IntelligentAlerting) generateAlertDescription( metric *PerformanceMetric, anomaly *Anomaly) string {
return fmt.Sprintf( "Anomaly detected in %s: %s is %.2f (baseline: %.2f, confidence: %.1f%%)", metric.Service, metric.MetricType, metric.Value, anomaly.Baseline, anomaly.Confidence*100, )}
Production Deployment Best Practices
Security Hardening
# Security-hardened eBPF agent deploymentapiVersion: v1kind: SecurityContextspec: # Run as non-root user where possible runAsNonRoot: false # Required for eBPF operations runAsUser: 0
# Minimal required capabilities capabilities: add: - SYS_ADMIN # Required for eBPF program loading - BPF # Required for eBPF operations - SYS_PTRACE # Required for process tracing drop: - ALL # Drop all other capabilities
# Security context constraints allowPrivilegeEscalation: false readOnlyRootFilesystem: true
# SELinux settings seLinuxOptions: type: container_runtime_t
Resource Management
# Resource limits and requestsresources: requests: cpu: 100m memory: 128Mi ephemeral-storage: 1Gi limits: cpu: 500m memory: 512Mi ephemeral-storage: 2Gi
# Quality of ServicepriorityClassName: system-node-critical
# Pod disruption budgetapiVersion: policy/v1kind: PodDisruptionBudgetmetadata: name: dx-uma-ebpf-agent-pdbspec: minAvailable: 80% selector: matchLabels: app: dx-uma-ebpf-agent
Monitoring and Observability
// Self-monitoring for the eBPF agenttype AgentMonitoring struct { metrics *prometheus.Registry healthCheck *HealthChecker logger *zap.Logger}
func (am *AgentMonitoring) RegisterMetrics() { // Agent performance metrics am.eventsProcessedTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Name: "ebpf_agent_events_processed_total", Help: "Total number of eBPF events processed", }, []string{"event_type", "status"}, )
am.programLoadTime = prometheus.NewHistogram( prometheus.HistogramOpts{ Name: "ebpf_agent_program_load_duration_seconds", Help: "Time taken to load eBPF programs", Buckets: prometheus.DefBuckets, }, )
am.memoryUsage = prometheus.NewGauge( prometheus.GaugeOpts{ Name: "ebpf_agent_memory_usage_bytes", Help: "Current memory usage of the eBPF agent", }, )
// Register metrics am.metrics.MustRegister(am.eventsProcessedTotal) am.metrics.MustRegister(am.programLoadTime) am.metrics.MustRegister(am.memoryUsage)}
func (am *AgentMonitoring) StartHealthCheck() { ticker := time.NewTicker(30 * time.Second) go func() { for range ticker.C { health := am.healthCheck.CheckHealth() if !health.Healthy { am.logger.Error("Agent health check failed", zap.String("reason", health.Reason), zap.Duration("uptime", health.Uptime)) } } }()}
Performance Optimization Strategies
eBPF Program Optimization
// Optimized eBPF program for high-performance monitoring#include <vmlinux.h>#include <bpf/bpf_helpers.h>#include <bpf/bpf_core_read.h>
// Optimized data structuresstruct { __uint(type, BPF_MAP_TYPE_LRU_HASH); __uint(max_entries, 65536); __type(key, __u64); __type(value, struct connection_info);} connection_cache SEC(".maps");
// Per-CPU array for better performancestruct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(max_entries, 1); __type(key, __u32); __type(value, struct metrics_buffer);} metrics_buffers SEC(".maps");
// Rate limiting to prevent overwhelming user spacestruct { __uint(type, BPF_MAP_TYPE_LRU_HASH); __uint(max_entries, 1024); __type(key, __u32); __type(value, __u64);} rate_limits SEC(".maps");
// Optimized event processingSEC("tp_btf/sys_enter_read")int trace_read_entry(u64 *ctx) { __u32 pid = bpf_get_current_pid_tgid() >> 32; __u64 now = bpf_ktime_get_ns();
// Rate limiting: max 1000 events per second per process __u64 *last_event = bpf_map_lookup_elem(&rate_limits, &pid); if (last_event && (now - *last_event) < 1000000) { // 1ms return 0; } bpf_map_update_elem(&rate_limits, &pid, &now, BPF_ANY);
// Use per-CPU buffer for better performance __u32 zero = 0; struct metrics_buffer *buffer = bpf_map_lookup_elem(&metrics_buffers, &zero); if (!buffer) return 0;
// Process event efficiently process_read_event(ctx, buffer);
return 0;}
// Efficient helper functionstatic __always_inline void process_read_event(u64 *ctx, struct metrics_buffer *buffer) { // Optimized event processing logic __u32 fd = (__u32)ctx[0]; __u64 count = ctx[2];
// Quick validation if (fd < 0 || count > MAX_READ_SIZE) return;
// Batch processing for efficiency if (buffer->count < BUFFER_SIZE) { buffer->events[buffer->count++] = create_read_event(fd, count); }
// Flush buffer when full if (buffer->count >= BUFFER_SIZE) { flush_metrics_buffer(buffer); }}
User-Space Optimization
// High-performance user-space processingtype OptimizedProcessor struct { workers int eventPool sync.Pool metricsPool sync.Pool batchSize int flushInterval time.Duration}
func NewOptimizedProcessor() *OptimizedProcessor { return &OptimizedProcessor{ workers: runtime.NumCPU(), batchSize: 1000, flushInterval: 5 * time.Second, eventPool: sync.Pool{ New: func() interface{} { return make([]*Event, 0, 1000) }, }, metricsPool: sync.Pool{ New: func() interface{} { return make([]*Metric, 0, 1000) }, }, }}
func (op *OptimizedProcessor) ProcessEvents(ctx context.Context, reader *ringbuf.Reader) { // Create worker pool eventChan := make(chan *Event, op.workers*2) var wg sync.WaitGroup
// Start workers for i := 0; i < op.workers; i++ { wg.Add(1) go op.worker(ctx, &wg, eventChan) }
// Read events from ring buffer go func() { defer close(eventChan)
for { select { case <-ctx.Done(): return default: record, err := reader.Read() if err != nil { continue }
event := op.parseEvent(record.RawSample) if event != nil { select { case eventChan <- event: case <-ctx.Done(): return } } } } }()
wg.Wait()}
func (op *OptimizedProcessor) worker(ctx context.Context, wg *sync.WaitGroup, eventChan <-chan *Event) { defer wg.Done()
// Get batch buffer from pool batch := op.eventPool.Get().([]*Event) defer op.eventPool.Put(batch[:0])
ticker := time.NewTicker(op.flushInterval) defer ticker.Stop()
for { select { case <-ctx.Done(): if len(batch) > 0 { op.processBatch(batch) } return
case event, ok := <-eventChan: if !ok { if len(batch) > 0 { op.processBatch(batch) } return }
batch = append(batch, event)
// Process when batch is full if len(batch) >= op.batchSize { op.processBatch(batch) batch = batch[:0] }
case <-ticker.C: // Periodic flush if len(batch) > 0 { op.processBatch(batch) batch = batch[:0] } } }}
func (op *OptimizedProcessor) processBatch(events []*Event) { // Get metrics buffer from pool metrics := op.metricsPool.Get().([]*Metric) defer op.metricsPool.Put(metrics[:0])
// Process events in batch for _, event := range events { metric := op.eventToMetric(event) if metric != nil { metrics = append(metrics, metric) } }
// Send metrics to backend if len(metrics) > 0 { op.sendMetrics(metrics) }}
Conclusion
Broadcom’s eBPF agent represents a paradigm shift in cloud-native observability, offering a revolutionary approach that addresses the fundamental challenges of monitoring modern microservices architectures.
Key Advantages
- Non-Intrusive Monitoring: Zero code changes required for comprehensive observability
- Universal Language Support: Single agent supports Java, .NET, PHP, Node.js, Python, Go, and C++
- Near-Zero Overhead: Minimal performance impact with kernel-level execution
- Dynamic Instrumentation: Real-time probe insertion without application restarts
- Automatic Discovery: Intelligent detection and monitoring of Kubernetes workloads
Strategic Benefits
- Reduced Complexity: Single monitoring solution for heterogeneous environments
- Faster Time to Value: Immediate insights without development overhead
- Operational Excellence: Comprehensive visibility into application performance
- Cost Efficiency: Reduced monitoring infrastructure and maintenance overhead
- Future-Proof Architecture: Scalable solution for evolving cloud-native landscapes
When to Choose eBPF vs. In-Process Agents
Choose eBPF Agent when:
- Operating in resource-constrained environments
- Monitoring diverse, multi-language applications
- Requiring minimal performance impact
- Deploying in dynamic, auto-scaling environments
- Seeking comprehensive system-wide visibility
Choose In-Process Agent when:
- Requiring deep application-specific instrumentation
- Needing custom business logic integration
- Operating in environments with eBPF restrictions
- Requiring legacy system compatibility
The eBPF agent’s innovative approach, combined with DX Operational Observability’s comprehensive platform, provides organizations with the tools needed to achieve operational excellence in their cloud-native journey.
Resources and Further Reading
Broadcom DX Platform
eBPF Technology
Cloud-Native Monitoring
Technical Resources
Based on the original article by Ravina Khanna on Broadcom Software Academy