3397 words
17 minutes
Introducing The eBPF Agent: A No-Code Approach for Cloud-Native Observability

Introducing The eBPF Agent: A No-Code Approach for Cloud-Native Observability#

Microservices architecture has become the dominant approach for building scalable, resilient, and flexible applications. However, monitoring these microservices presents unique challenges due to their distributed nature, resource constraints, enterprise scale, and dynamic environments like Kubernetes clusters. Traditional in-process application agents often introduce significant overhead through intrusive instrumentation and frequent polling.

Broadcom’s innovative eBPF agent offers a revolutionary solution: lightweight, powerful, and non-intrusive monitoring that addresses the critical needs of modern cloud-native environments.

The Microservices Monitoring Challenge#

graph TB
subgraph "Traditional Monitoring Challenges"
subgraph "Microservices Architecture"
MS1[Service A] --> DB1[Database]
MS2[Service B] --> MS1
MS3[Service C] --> MS2
MS4[Service D] --> MS3
end
subgraph "Monitoring Problems"
P1[Heavy Agent Overhead] --> Impact[Performance Impact]
P2[Intrusive Instrumentation] --> Impact
P3[Resource Constraints] --> Impact
P4[Dynamic Scaling] --> Impact
P5[Language Diversity] --> Impact
end
Impact --> Results[Monitoring Blind Spots]
end
style P1 fill:#ffcdd2
style P2 fill:#ffcdd2
style P3 fill:#ffcdd2
style Impact fill:#ffcdd2
style Results fill:#ffcdd2

Key Challenges in Cloud-Native Monitoring#

  1. Resource Constraints: Containers have limited CPU and memory allocations
  2. Dynamic Environments: Kubernetes pods scale up/down rapidly
  3. Distributed Complexity: Transactions span multiple services and nodes
  4. Language Diversity: Mixed technology stacks require different monitoring approaches
  5. Performance Sensitivity: Any monitoring overhead affects application performance

Understanding eBPF: The Magic Behind Modern Observability#

eBPF (Extended Berkeley Packet Filter) acts as a magical lens into the Linux kernel, providing unprecedented visibility into system behavior without requiring code changes or application restarts.

graph LR
subgraph "eBPF Capabilities"
subgraph "System Monitoring"
S1[System Calls] --> Crystal[eBPF Magic Lens]
S2[Network Traffic] --> Crystal
S3[Process Behavior] --> Crystal
end
subgraph "Granular Insights"
Crystal --> G1[Process-by-Process Tracing]
Crystal --> G2[Container-Level Metrics]
Crystal --> G3[Application Flow Topology]
end
subgraph "Security & Performance"
Crystal --> Security[Runtime Security Auditing]
Crystal --> Performance[Performance Analytics]
Crystal --> Incident[Incident Response]
end
end
style Crystal fill:#e1f5fe
style G1 fill:#c8e6c9
style G2 fill:#c8e6c9
style G3 fill:#c8e6c9

eBPF’s Core Advantages#

  • System-Wide Visibility: Monitor all processes and containers on a host
  • Real-Time Insights: Capture events as they happen in the kernel
  • Non-Intrusive: No application modifications required
  • High Performance: Minimal overhead with kernel-level execution
  • Universal Compatibility: Works with any programming language or framework

In-Process vs. eBPF Agents: A Comprehensive Comparison#

graph TB
subgraph "Agent Architecture Comparison"
subgraph "In-Process Agent"
IP1[Agent Inside Application] --> IP2[User-Space Execution]
IP2 --> IP3[Application-Specific Monitoring]
IP3 --> IP4[Higher Overhead]
IP4 --> IP5[Intrusive Instrumentation]
end
subgraph "eBPF Agent"
EB1[Agent Outside Application] --> EB2[Kernel-Space Execution]
EB2 --> EB3[System-Wide Monitoring]
EB3 --> EB4[Low Overhead]
EB4 --> EB5[Non-Intrusive Operation]
end
end
style IP4 fill:#ffcdd2
style IP5 fill:#ffcdd2
style EB4 fill:#c8e6c9
style EB5 fill:#c8e6c9

Detailed Feature Comparison#

FeatureIn-Process AgenteBPF Agent
Execution SpaceInside application (user-space)Outside application (kernel-space)
Performance ImpactHigher overhead; intrusiveLow overhead; non-intrusive
Monitoring ScopeApplication-specific; limitedSystem-wide; application-agnostic
DeploymentRequires code changesNo code changes needed
Language SupportLanguage-specific agentsUniversal language support
ScalingScales with application instancesScales with infrastructure nodes
Resource UsagePer-application overheadShared infrastructure overhead
MaintenanceApplication lifecycle dependentInfrastructure lifecycle dependent

DX Operational Observability (DX O2): The Complete Solution#

Broadcom’s DX Operational Observability helps teams manage the explosive growth in monitoring data, infrastructure complexity, and business demands by providing end-to-end observability across the entire digital delivery chain.

DX O2 Architecture Overview#

graph TB
subgraph "DX Operational Observability Platform"
subgraph "Data Collection Layer"
UMA[Universal Monitoring Agent] --> eBPF[eBPF Agent]
UMA --> Traditional[Traditional Agents]
UMA --> Synthetic[Synthetic Monitoring]
end
subgraph "Processing Layer"
eBPF --> Correlation[Data Correlation Engine]
Traditional --> Correlation
Synthetic --> Correlation
Correlation --> AI[AI/ML Analytics]
end
subgraph "Insights Layer"
AI --> Dashboards[Real-time Dashboards]
AI --> Alerts[Intelligent Alerting]
AI --> Recommendations[Actionable Recommendations]
end
subgraph "Integration Layer"
Dashboards --> APIs[REST APIs]
Alerts --> Webhooks[Webhook Integration]
Recommendations --> Automation[Automation Workflows]
end
end
style eBPF fill:#e1f5fe
style AI fill:#f3e5f5
style Dashboards fill:#e8f5e8

The eBPF Agent: Revolutionary Features#

1. Dynamic Instrumentation#

The eBPF agent provides dynamic instrumentation by inserting probes into the running system without disruption:

// Example: Dynamic HTTP request monitoring
#include <vmlinux.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
// HTTP request tracking structure
struct http_request {
__u32 pid;
__u32 tid;
__u64 timestamp;
__u32 container_id;
__u16 port;
__u8 method; // GET=1, POST=2, etc.
char host[64];
char path[128];
};
// Ring buffer for event streaming
struct {
__uint(type, BPF_MAP_TYPE_RINGBUF);
__uint(max_entries, 1024 * 1024);
} http_events SEC(".maps");
// Hook into socket operations for HTTP detection
SEC("uprobe/connect")
int trace_connect(struct pt_regs *ctx) {
struct sockaddr *addr = (struct sockaddr *)PT_REGS_PARM2(ctx);
if (!addr) return 0;
// Extract connection information
__u32 pid = bpf_get_current_pid_tgid() >> 32;
__u64 timestamp = bpf_ktime_get_ns();
// Create HTTP request event
struct http_request *event = bpf_ringbuf_reserve(&http_events,
sizeof(*event), 0);
if (!event) return 0;
event->pid = pid;
event->tid = (__u32)bpf_get_current_pid_tgid();
event->timestamp = timestamp;
event->container_id = get_container_id();
// Extract port information
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
event->port = bpf_ntohs(BPF_CORE_READ(sin, sin_port));
}
bpf_ringbuf_submit(event, 0);
return 0;
}
// Helper function to get container ID from cgroup
static __u32 get_container_id() {
struct task_struct *task = (struct task_struct *)bpf_get_current_task();
// Simplified container ID extraction
return bpf_get_current_pid_tgid() >> 32;
}
char _license[] SEC("license") = "GPL";

2. Kernel-Level Metrics Collection#

The eBPF agent leverages Linux kernel-level API calls that are consistent across all hosts, ensuring uniform collection of observability metrics:

graph TB
subgraph "Three Key Performance Indicators"
KPI1[Responses per Interval] --> Metrics[Application Health KPIs]
KPI2[Errors per Interval] --> Metrics
KPI3[Average Response Time] --> Metrics
subgraph "Collection Method"
Metrics --> Kernel[Kernel-Level API Calls]
Kernel --> Consistent[Consistent Across All Hosts]
Consistent --> Uniform[Uniform Metric Collection]
end
subgraph "Benefits"
Uniform --> Reliability[Reliable Monitoring]
Uniform --> Correlation[Cross-Host Correlation]
Uniform --> Scalability[Massive Scale Support]
end
end
style Metrics fill:#e1f5fe
style Uniform fill:#c8e6c9
style Reliability fill:#c8e6c9

3. Language-Agnostic Broad Support#

graph TB
subgraph "Universal Language Support"
subgraph "Supported Languages"
L1[Java Applications] --> eBPF[eBPF Agent]
L2[.NET Applications] --> eBPF
L3[PHP Applications] --> eBPF
L4[Node.js Applications] --> eBPF
L5[Python Applications] --> eBPF
L6[Go Applications] --> eBPF
L7[C++ Applications] --> eBPF
end
subgraph "Monitoring Capabilities"
eBPF --> Topology[Application Flow Topology]
eBPF --> Correlation[Full Stack Correlation]
eBPF --> Insights[Intuitive Insights]
end
subgraph "Business Value"
Topology --> StandardMonitoring[Standardized Monitoring]
Correlation --> ReducedComplexity[Reduced Complexity]
Insights --> FasterTTR[Faster Time to Resolution]
end
end
style eBPF fill:#e1f5fe
style StandardMonitoring fill:#c8e6c9
style ReducedComplexity fill:#c8e6c9
style FasterTTR fill:#c8e6c9

The eBPF agent natively supports applications built using:

  • Java: Enterprise applications, Spring Boot, microservices
  • .NET: Windows and Linux .NET applications
  • PHP: Web applications, WordPress, Laravel
  • Node.js: JavaScript backend services, Express.js
  • Python: Django, Flask, FastAPI applications
  • Go: Cloud-native services, Kubernetes operators
  • C++: High-performance applications, system services

4. Near-Zero Overhead Architecture#

graph LR
subgraph "Zero Overhead Design"
subgraph "Traditional Monitoring"
T1[In-Process Agent] --> T2[Application Pod]
T2 --> T3[Resource Competition]
T3 --> T4[Performance Impact]
end
subgraph "eBPF Monitoring"
E1[eBPF Agent] --> E2[Outside Application Pod]
E2 --> E3[Dedicated Resources]
E3 --> E4[No Performance Impact]
end
end
style T3 fill:#ffcdd2
style T4 fill:#ffcdd2
style E3 fill:#c8e6c9
style E4 fill:#c8e6c9

The agent operates outside the application pod, minimizing resource competition while providing comprehensive insights.

Universal Monitoring Agent (UMA) Architecture#

The Universal Monitoring Agent features a microservices agent that runs as part of UMA daemonset pods, acting as a single agent deployment that automatically discovers and monitors Kubernetes and Red Hat OpenShift environments.

UMA Deployment Architecture#

# Universal Monitoring Agent DaemonSet
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: dx-uma-ebpf-agent
namespace: dx-observability
spec:
selector:
matchLabels:
app: dx-uma-ebpf-agent
template:
metadata:
labels:
app: dx-uma-ebpf-agent
spec:
hostNetwork: true
hostPID: true
serviceAccountName: dx-uma-ebpf-agent
containers:
- name: app-container-monitor
image: broadcom/dx-uma-ebpf:latest
securityContext:
privileged: true
capabilities:
add: ["SYS_ADMIN", "BPF", "SYS_PTRACE"]
env:
- name: DX_TENANT_ID
valueFrom:
secretKeyRef:
name: dx-credentials
key: tenant-id
- name: DX_API_TOKEN
valueFrom:
secretKeyRef:
name: dx-credentials
key: api-token
- name: CLUSTER_NAME
value: "production-cluster"
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 500m
memory: 512Mi
volumeMounts:
- name: debugfs
mountPath: /sys/kernel/debug
- name: tracefs
mountPath: /sys/kernel/tracing
- name: bpf-maps
mountPath: /sys/fs/bpf
- name: proc
mountPath: /host/proc
readOnly: true
- name: sys
mountPath: /host/sys
readOnly: true
volumes:
- name: debugfs
hostPath:
path: /sys/kernel/debug
- name: tracefs
hostPath:
path: /sys/kernel/tracing
- name: bpf-maps
hostPath:
path: /sys/fs/bpf
- name: proc
hostPath:
path: /proc
- name: sys
hostPath:
path: /sys
tolerations:
- operator: Exists
effect: NoSchedule
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: dx-uma-ebpf-agent
namespace: dx-observability
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: dx-uma-ebpf-agent
rules:
- apiGroups: [""]
resources: ["pods", "nodes", "services", "endpoints"]
verbs: ["get", "list", "watch"]
- apiGroups: ["apps"]
resources: ["deployments", "replicasets", "daemonsets"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: dx-uma-ebpf-agent
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: dx-uma-ebpf-agent
subjects:
- kind: ServiceAccount
name: dx-uma-ebpf-agent
namespace: dx-observability

Automatic Discovery and Monitoring#

// UMA automatic discovery implementation
package main
import (
"context"
"fmt"
"log"
"time"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/rest"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
)
type UMADiscoveryAgent struct {
k8sClient kubernetes.Interface
ebpfAgent *eBPFAgent
discoveredPods map[string]*PodInfo
ticker *time.Ticker
}
type PodInfo struct {
Name string
Namespace string
ContainerID string
Language string
Ports []int32
Labels map[string]string
LastSeen time.Time
}
func NewUMADiscoveryAgent() (*UMADiscoveryAgent, error) {
// Create Kubernetes client from in-cluster config
config, err := rest.InClusterConfig()
if err != nil {
return nil, fmt.Errorf("creating k8s config: %w", err)
}
clientset, err := kubernetes.NewForConfig(config)
if err != nil {
return nil, fmt.Errorf("creating k8s client: %w", err)
}
ebpfAgent, err := NeweBPFAgent()
if err != nil {
return nil, fmt.Errorf("creating eBPF agent: %w", err)
}
return &UMADiscoveryAgent{
k8sClient: clientset,
ebpfAgent: ebpfAgent,
discoveredPods: make(map[string]*PodInfo),
ticker: time.NewTicker(30 * time.Second),
}, nil
}
func (ua *UMADiscoveryAgent) Start(ctx context.Context) {
log.Println("Starting UMA Discovery Agent...")
// Initial discovery
ua.discoverPods()
// Start eBPF monitoring
go ua.ebpfAgent.StartMonitoring(ctx)
// Periodic discovery
for {
select {
case <-ctx.Done():
return
case <-ua.ticker.C:
ua.discoverPods()
}
}
}
func (ua *UMADiscoveryAgent) discoverPods() {
pods, err := ua.k8sClient.CoreV1().Pods("").List(context.TODO(),
metav1.ListOptions{})
if err != nil {
log.Printf("Error listing pods: %v", err)
return
}
currentPods := make(map[string]*PodInfo)
for _, pod := range pods.Items {
if pod.Status.Phase != "Running" {
continue
}
podKey := fmt.Sprintf("%s/%s", pod.Namespace, pod.Name)
podInfo := &PodInfo{
Name: pod.Name,
Namespace: pod.Namespace,
Labels: pod.Labels,
LastSeen: time.Now(),
}
// Extract container information
for _, container := range pod.Spec.Containers {
// Detect language from image or labels
podInfo.Language = ua.detectLanguage(container.Image, pod.Labels)
// Extract ports
for _, port := range container.Ports {
podInfo.Ports = append(podInfo.Ports, port.ContainerPort)
}
}
// Get container ID from status
if len(pod.Status.ContainerStatuses) > 0 {
containerID := pod.Status.ContainerStatuses[0].ContainerID
podInfo.ContainerID = ua.extractContainerID(containerID)
}
currentPods[podKey] = podInfo
// Check if this is a new pod
if _, exists := ua.discoveredPods[podKey]; !exists {
log.Printf("Discovered new pod: %s (Language: %s)",
podKey, podInfo.Language)
ua.configureBPFMonitoring(podInfo)
}
}
// Remove pods that no longer exist
for podKey, podInfo := range ua.discoveredPods {
if _, exists := currentPods[podKey]; !exists {
log.Printf("Pod removed: %s", podKey)
ua.removeBPFMonitoring(podInfo)
}
}
ua.discoveredPods = currentPods
log.Printf("Discovery complete: monitoring %d pods", len(currentPods))
}
func (ua *UMADiscoveryAgent) detectLanguage(image string, labels map[string]string) string {
// Check labels first
if lang, exists := labels["app.language"]; exists {
return lang
}
// Detect from image name
imageLanguages := map[string]string{
"java": "java",
"openjdk": "java",
"node": "nodejs",
"python": "python",
"golang": "go",
"go": "go",
"dotnet": "dotnet",
"php": "php",
"nginx": "web",
"apache": "web",
}
for pattern, language := range imageLanguages {
if strings.Contains(strings.ToLower(image), pattern) {
return language
}
}
return "unknown"
}
func (ua *UMADiscoveryAgent) configureBPFMonitoring(podInfo *PodInfo) {
config := &eBPFMonitoringConfig{
ContainerID: podInfo.ContainerID,
Language: podInfo.Language,
Ports: podInfo.Ports,
Labels: podInfo.Labels,
}
ua.ebpfAgent.AddMonitoringTarget(config)
}
func (ua *UMADiscoveryAgent) removeBPFMonitoring(podInfo *PodInfo) {
ua.ebpfAgent.RemoveMonitoringTarget(podInfo.ContainerID)
}
func (ua *UMADiscoveryAgent) extractContainerID(fullID string) string {
// Extract short container ID from full container ID
// Format: docker://1a2b3c4d5e6f...
parts := strings.Split(fullID, "://")
if len(parts) == 2 && len(parts[1]) >= 12 {
return parts[1][:12]
}
return fullID
}

Advanced eBPF Monitoring Features#

Application Flow Topology#

The eBPF agent automatically constructs application flow topology by tracking inter-service communications:

// Application Flow Topology Construction
type ApplicationFlowTracker struct {
serviceMap map[string]*ServiceNode
connections map[string]*ConnectionFlow
topology *TopologyGraph
}
type ServiceNode struct {
Name string
Namespace string
Language string
Version string
Endpoints []string
Dependencies []string
Dependents []string
Metrics *ServiceMetrics
}
type ConnectionFlow struct {
Source string
Destination string
Protocol string
Port int32
RequestRate float64
ErrorRate float64
Latency time.Duration
LastSeen time.Time
}
type ServiceMetrics struct {
RequestsPerSecond float64
ErrorsPerSecond float64
AverageLatency time.Duration
P95Latency time.Duration
P99Latency time.Duration
}
func (aft *ApplicationFlowTracker) ProcessNetworkEvent(event *NetworkEvent) {
sourceService := aft.getOrCreateService(event.SourcePod)
destService := aft.getOrCreateService(event.DestinationPod)
// Create or update connection flow
flowKey := fmt.Sprintf("%s->%s:%d", sourceService.Name,
destService.Name, event.DestPort)
flow, exists := aft.connections[flowKey]
if !exists {
flow = &ConnectionFlow{
Source: sourceService.Name,
Destination: destService.Name,
Protocol: event.Protocol,
Port: event.DestPort,
}
aft.connections[flowKey] = flow
// Update service dependencies
sourceService.Dependencies = append(sourceService.Dependencies,
destService.Name)
destService.Dependents = append(destService.Dependents,
sourceService.Name)
}
// Update flow metrics
flow.RequestRate = aft.calculateRequestRate(flowKey)
flow.ErrorRate = aft.calculateErrorRate(flowKey)
flow.Latency = aft.calculateLatency(flowKey)
flow.LastSeen = time.Now()
// Update topology graph
aft.updateTopologyGraph()
}
func (aft *ApplicationFlowTracker) updateTopologyGraph() {
// Generate updated topology for visualization
topology := &TopologyGraph{
Nodes: make([]*TopologyNode, 0, len(aft.serviceMap)),
Edges: make([]*TopologyEdge, 0, len(aft.connections)),
}
// Add service nodes
for _, service := range aft.serviceMap {
node := &TopologyNode{
ID: service.Name,
Label: service.Name,
Language: service.Language,
Metrics: service.Metrics,
Status: aft.calculateServiceHealth(service),
}
topology.Nodes = append(topology.Nodes, node)
}
// Add connection edges
for _, connection := range aft.connections {
edge := &TopologyEdge{
Source: connection.Source,
Destination: connection.Destination,
Protocol: connection.Protocol,
Metrics: connection,
Health: aft.calculateConnectionHealth(connection),
}
topology.Edges = append(topology.Edges, edge)
}
aft.topology = topology
}

Real-Time Performance Analytics#

// Real-time performance analytics engine
type PerformanceAnalytics struct {
metricsBuffer *RingBuffer
aggregator *MetricsAggregator
anomalyDetector *AnomalyDetector
alertManager *AlertManager
}
type MetricsAggregator struct {
windows map[time.Duration]*TimeWindow
}
type TimeWindow struct {
Duration time.Duration
Buckets []*MetricsBucket
Current int
StartTime time.Time
}
type MetricsBucket struct {
Timestamp time.Time
RequestCount int64
ErrorCount int64
TotalLatency time.Duration
MinLatency time.Duration
MaxLatency time.Duration
LatencyHistogram map[time.Duration]int64
}
func (pa *PerformanceAnalytics) ProcessMetric(metric *PerformanceMetric) {
// Add to buffer for real-time processing
pa.metricsBuffer.Add(metric)
// Aggregate into time windows
pa.aggregator.AddMetric(metric)
// Check for anomalies
if anomaly := pa.anomalyDetector.Detect(metric); anomaly != nil {
pa.alertManager.TriggerAlert(anomaly)
}
// Update real-time dashboards
pa.updateRealTimeDashboard(metric)
}
func (ma *MetricsAggregator) AddMetric(metric *PerformanceMetric) {
for duration, window := range ma.windows {
bucket := window.GetCurrentBucket()
// Update bucket metrics
bucket.RequestCount++
if metric.IsError {
bucket.ErrorCount++
}
// Update latency statistics
bucket.TotalLatency += metric.Latency
if bucket.MinLatency == 0 || metric.Latency < bucket.MinLatency {
bucket.MinLatency = metric.Latency
}
if metric.Latency > bucket.MaxLatency {
bucket.MaxLatency = metric.Latency
}
// Update latency histogram
latencyBucket := ma.getLatencyBucket(metric.Latency)
bucket.LatencyHistogram[latencyBucket]++
// Rotate window if needed
if time.Since(bucket.Timestamp) >= duration/time.Duration(len(window.Buckets)) {
window.RotateBucket()
}
}
}

Intelligent Alerting System#

// Intelligent alerting with ML-based anomaly detection
type IntelligentAlerting struct {
baselineCalculator *BaselineCalculator
anomalyDetector *MLAnomalyDetector
alertPolicies map[string]*AlertPolicy
notificationQueue chan *Alert
}
type AlertPolicy struct {
Name string
Conditions []AlertCondition
Severity AlertSeverity
Cooldown time.Duration
NotificationChannels []string
}
type AlertCondition struct {
Metric string
Operator string
Threshold float64
Duration time.Duration
Aggregation string
}
type MLAnomalyDetector struct {
models map[string]*AnomalyModel
}
type AnomalyModel struct {
ModelType string
Parameters map[string]float64
Confidence float64
LastTrained time.Time
}
func (ia *IntelligentAlerting) EvaluateMetrics(metrics []*PerformanceMetric) {
for _, metric := range metrics {
// Calculate baseline
baseline := ia.baselineCalculator.GetBaseline(metric.Service, metric.MetricType)
// Detect anomalies using ML
anomaly := ia.anomalyDetector.DetectAnomaly(metric, baseline)
if anomaly != nil && anomaly.Confidence > 0.8 {
// Check alert policies
for _, policy := range ia.alertPolicies {
if ia.evaluatePolicy(policy, metric, anomaly) {
alert := &Alert{
PolicyName: policy.Name,
Severity: policy.Severity,
Service: metric.Service,
Metric: metric,
Anomaly: anomaly,
Timestamp: time.Now(),
Description: ia.generateAlertDescription(metric, anomaly),
}
ia.notificationQueue <- alert
}
}
}
}
}
func (ia *IntelligentAlerting) generateAlertDescription(
metric *PerformanceMetric, anomaly *Anomaly) string {
return fmt.Sprintf(
"Anomaly detected in %s: %s is %.2f (baseline: %.2f, confidence: %.1f%%)",
metric.Service,
metric.MetricType,
metric.Value,
anomaly.Baseline,
anomaly.Confidence*100,
)
}

Production Deployment Best Practices#

Security Hardening#

# Security-hardened eBPF agent deployment
apiVersion: v1
kind: SecurityContext
spec:
# Run as non-root user where possible
runAsNonRoot: false # Required for eBPF operations
runAsUser: 0
# Minimal required capabilities
capabilities:
add:
- SYS_ADMIN # Required for eBPF program loading
- BPF # Required for eBPF operations
- SYS_PTRACE # Required for process tracing
drop:
- ALL # Drop all other capabilities
# Security context constraints
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
# SELinux settings
seLinuxOptions:
type: container_runtime_t

Resource Management#

# Resource limits and requests
resources:
requests:
cpu: 100m
memory: 128Mi
ephemeral-storage: 1Gi
limits:
cpu: 500m
memory: 512Mi
ephemeral-storage: 2Gi
# Quality of Service
priorityClassName: system-node-critical
# Pod disruption budget
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: dx-uma-ebpf-agent-pdb
spec:
minAvailable: 80%
selector:
matchLabels:
app: dx-uma-ebpf-agent

Monitoring and Observability#

// Self-monitoring for the eBPF agent
type AgentMonitoring struct {
metrics *prometheus.Registry
healthCheck *HealthChecker
logger *zap.Logger
}
func (am *AgentMonitoring) RegisterMetrics() {
// Agent performance metrics
am.eventsProcessedTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "ebpf_agent_events_processed_total",
Help: "Total number of eBPF events processed",
},
[]string{"event_type", "status"},
)
am.programLoadTime = prometheus.NewHistogram(
prometheus.HistogramOpts{
Name: "ebpf_agent_program_load_duration_seconds",
Help: "Time taken to load eBPF programs",
Buckets: prometheus.DefBuckets,
},
)
am.memoryUsage = prometheus.NewGauge(
prometheus.GaugeOpts{
Name: "ebpf_agent_memory_usage_bytes",
Help: "Current memory usage of the eBPF agent",
},
)
// Register metrics
am.metrics.MustRegister(am.eventsProcessedTotal)
am.metrics.MustRegister(am.programLoadTime)
am.metrics.MustRegister(am.memoryUsage)
}
func (am *AgentMonitoring) StartHealthCheck() {
ticker := time.NewTicker(30 * time.Second)
go func() {
for range ticker.C {
health := am.healthCheck.CheckHealth()
if !health.Healthy {
am.logger.Error("Agent health check failed",
zap.String("reason", health.Reason),
zap.Duration("uptime", health.Uptime))
}
}
}()
}

Performance Optimization Strategies#

eBPF Program Optimization#

// Optimized eBPF program for high-performance monitoring
#include <vmlinux.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_core_read.h>
// Optimized data structures
struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 65536);
__type(key, __u64);
__type(value, struct connection_info);
} connection_cache SEC(".maps");
// Per-CPU array for better performance
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 1);
__type(key, __u32);
__type(value, struct metrics_buffer);
} metrics_buffers SEC(".maps");
// Rate limiting to prevent overwhelming user space
struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 1024);
__type(key, __u32);
__type(value, __u64);
} rate_limits SEC(".maps");
// Optimized event processing
SEC("tp_btf/sys_enter_read")
int trace_read_entry(u64 *ctx) {
__u32 pid = bpf_get_current_pid_tgid() >> 32;
__u64 now = bpf_ktime_get_ns();
// Rate limiting: max 1000 events per second per process
__u64 *last_event = bpf_map_lookup_elem(&rate_limits, &pid);
if (last_event && (now - *last_event) < 1000000) { // 1ms
return 0;
}
bpf_map_update_elem(&rate_limits, &pid, &now, BPF_ANY);
// Use per-CPU buffer for better performance
__u32 zero = 0;
struct metrics_buffer *buffer = bpf_map_lookup_elem(&metrics_buffers, &zero);
if (!buffer) return 0;
// Process event efficiently
process_read_event(ctx, buffer);
return 0;
}
// Efficient helper function
static __always_inline void process_read_event(u64 *ctx,
struct metrics_buffer *buffer) {
// Optimized event processing logic
__u32 fd = (__u32)ctx[0];
__u64 count = ctx[2];
// Quick validation
if (fd < 0 || count > MAX_READ_SIZE) return;
// Batch processing for efficiency
if (buffer->count < BUFFER_SIZE) {
buffer->events[buffer->count++] = create_read_event(fd, count);
}
// Flush buffer when full
if (buffer->count >= BUFFER_SIZE) {
flush_metrics_buffer(buffer);
}
}

User-Space Optimization#

// High-performance user-space processing
type OptimizedProcessor struct {
workers int
eventPool sync.Pool
metricsPool sync.Pool
batchSize int
flushInterval time.Duration
}
func NewOptimizedProcessor() *OptimizedProcessor {
return &OptimizedProcessor{
workers: runtime.NumCPU(),
batchSize: 1000,
flushInterval: 5 * time.Second,
eventPool: sync.Pool{
New: func() interface{} {
return make([]*Event, 0, 1000)
},
},
metricsPool: sync.Pool{
New: func() interface{} {
return make([]*Metric, 0, 1000)
},
},
}
}
func (op *OptimizedProcessor) ProcessEvents(ctx context.Context, reader *ringbuf.Reader) {
// Create worker pool
eventChan := make(chan *Event, op.workers*2)
var wg sync.WaitGroup
// Start workers
for i := 0; i < op.workers; i++ {
wg.Add(1)
go op.worker(ctx, &wg, eventChan)
}
// Read events from ring buffer
go func() {
defer close(eventChan)
for {
select {
case <-ctx.Done():
return
default:
record, err := reader.Read()
if err != nil {
continue
}
event := op.parseEvent(record.RawSample)
if event != nil {
select {
case eventChan <- event:
case <-ctx.Done():
return
}
}
}
}
}()
wg.Wait()
}
func (op *OptimizedProcessor) worker(ctx context.Context, wg *sync.WaitGroup,
eventChan <-chan *Event) {
defer wg.Done()
// Get batch buffer from pool
batch := op.eventPool.Get().([]*Event)
defer op.eventPool.Put(batch[:0])
ticker := time.NewTicker(op.flushInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
if len(batch) > 0 {
op.processBatch(batch)
}
return
case event, ok := <-eventChan:
if !ok {
if len(batch) > 0 {
op.processBatch(batch)
}
return
}
batch = append(batch, event)
// Process when batch is full
if len(batch) >= op.batchSize {
op.processBatch(batch)
batch = batch[:0]
}
case <-ticker.C:
// Periodic flush
if len(batch) > 0 {
op.processBatch(batch)
batch = batch[:0]
}
}
}
}
func (op *OptimizedProcessor) processBatch(events []*Event) {
// Get metrics buffer from pool
metrics := op.metricsPool.Get().([]*Metric)
defer op.metricsPool.Put(metrics[:0])
// Process events in batch
for _, event := range events {
metric := op.eventToMetric(event)
if metric != nil {
metrics = append(metrics, metric)
}
}
// Send metrics to backend
if len(metrics) > 0 {
op.sendMetrics(metrics)
}
}

Conclusion#

Broadcom’s eBPF agent represents a paradigm shift in cloud-native observability, offering a revolutionary approach that addresses the fundamental challenges of monitoring modern microservices architectures.

Key Advantages#

  • Non-Intrusive Monitoring: Zero code changes required for comprehensive observability
  • Universal Language Support: Single agent supports Java, .NET, PHP, Node.js, Python, Go, and C++
  • Near-Zero Overhead: Minimal performance impact with kernel-level execution
  • Dynamic Instrumentation: Real-time probe insertion without application restarts
  • Automatic Discovery: Intelligent detection and monitoring of Kubernetes workloads

Strategic Benefits#

  • Reduced Complexity: Single monitoring solution for heterogeneous environments
  • Faster Time to Value: Immediate insights without development overhead
  • Operational Excellence: Comprehensive visibility into application performance
  • Cost Efficiency: Reduced monitoring infrastructure and maintenance overhead
  • Future-Proof Architecture: Scalable solution for evolving cloud-native landscapes

When to Choose eBPF vs. In-Process Agents#

Choose eBPF Agent when:

  • Operating in resource-constrained environments
  • Monitoring diverse, multi-language applications
  • Requiring minimal performance impact
  • Deploying in dynamic, auto-scaling environments
  • Seeking comprehensive system-wide visibility

Choose In-Process Agent when:

  • Requiring deep application-specific instrumentation
  • Needing custom business logic integration
  • Operating in environments with eBPF restrictions
  • Requiring legacy system compatibility

The eBPF agent’s innovative approach, combined with DX Operational Observability’s comprehensive platform, provides organizations with the tools needed to achieve operational excellence in their cloud-native journey.

Resources and Further Reading#

Broadcom DX Platform#

eBPF Technology#

Cloud-Native Monitoring#

Technical Resources#


Based on the original article by Ravina Khanna on Broadcom Software Academy

Introducing The eBPF Agent: A No-Code Approach for Cloud-Native Observability
https://mranv.pages.dev/posts/broadcom-ebpf-agent-cloud-native-observability/
Author
Anubhav Gain
Published at
2025-09-16
License
CC BY-NC-SA 4.0