Day 95 - DevOps Excellence: Best Practices for 2025
As we approach 2025, DevOps continues to evolve from a cultural movement to a sophisticated engineering discipline. Today, we’ll explore the latest best practices, emerging trends, and strategies that define DevOps excellence in modern organizations. From AI-powered automation to platform engineering, let’s dive into what it takes to build world-class DevOps capabilities.
The Evolution of DevOps
DevOps has transformed significantly over the past decade:
- 2015-2018: Focus on CI/CD and automation
- 2019-2021: Cloud-native and Kubernetes adoption
- 2022-2023: Platform engineering and developer experience
- 2024-2025: AI-augmented operations and autonomous systems
Platform Engineering: The New DevOps
Internal Developer Platforms (IDP)
apiVersion: platform.company.com/v1kind: PlatformServicemetadata: name: application-platformspec: capabilities: - name: deployment description: "Automated application deployment" interfaces: - cli - api - ui - name: observability description: "Built-in monitoring and tracing" components: - prometheus - grafana - jaeger - name: security description: "Security scanning and compliance" features: - vulnerability-scanning - secret-management - policy-enforcement
templates: - name: microservice description: "Standard microservice template" includes: - dockerfile - kubernetes-manifests - ci-pipeline - monitoring-dashboard
golden-paths: - name: "Deploy to Production" steps: - id: code-quality tool: sonarqube required: true - id: security-scan tool: snyk required: true - id: build tool: github-actions - id: deploy tool: argocd environments: ["dev", "staging", "prod"]
Self-Service Developer Portal
export class PlatformAPI { async createApplication(spec: ApplicationSpec): Promise<Application> { // Validate application specification const validation = await this.validateSpec(spec); if (!validation.valid) { throw new ValidationError(validation.errors); }
// Provision infrastructure const infrastructure = await this.provisionInfrastructure({ name: spec.name, type: spec.type, resources: spec.resources, region: spec.region || "us-east-1", });
// Setup CI/CD pipeline const pipeline = await this.createPipeline({ repository: spec.repository, branch: spec.branch || "main", deploymentTargets: spec.environments, qualityGates: spec.qualityGates || this.getDefaultQualityGates(), });
// Configure observability const observability = await this.setupObservability({ applicationId: infrastructure.id, metrics: spec.metrics || this.getDefaultMetrics(), alerts: spec.alerts || this.getDefaultAlerts(), slos: spec.slos, });
// Create developer documentation const docs = await this.generateDocumentation({ application: spec, infrastructure: infrastructure, pipeline: pipeline, observability: observability, });
return { id: infrastructure.id, name: spec.name, status: "provisioned", endpoints: infrastructure.endpoints, dashboards: observability.dashboards, documentation: docs.url, }; }
private getDefaultQualityGates(): QualityGate[] { return [ { name: "code-coverage", threshold: 80, blocker: true, }, { name: "security-vulnerabilities", threshold: 0, severity: "high", blocker: true, }, { name: "performance-regression", threshold: 10, // 10% regression allowed blocker: false, }, ]; }}
AI-Powered DevOps
Intelligent Automation
import openaifrom prometheus_client import CollectorRegistry, Gaugeimport pandas as pdfrom sklearn.ensemble import IsolationForestimport numpy as np
class AIDevOpsAssistant: def __init__(self): self.openai_client = openai.Client() self.anomaly_detector = IsolationForest(contamination=0.1) self.metrics_history = []
def analyze_deployment_failure(self, logs: str, metrics: dict) -> dict: """Use AI to analyze deployment failures and suggest fixes"""
# Prepare context for AI context = f""" Deployment failed with the following logs: {logs[-2000:]} # Last 2000 characters
System metrics at failure time: - CPU Usage: {metrics.get('cpu_usage', 'N/A')}% - Memory Usage: {metrics.get('memory_usage', 'N/A')}% - Error Rate: {metrics.get('error_rate', 'N/A')}% - Response Time: {metrics.get('response_time', 'N/A')}ms
Analyze the failure and provide: 1. Root cause analysis 2. Immediate fix suggestions 3. Long-term prevention strategies """
response = self.openai_client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are a DevOps expert analyzing deployment failures."}, {"role": "user", "content": context} ], temperature=0.3 )
analysis = response.choices[0].message.content
# Extract actionable items return { 'analysis': analysis, 'automated_fixes': self._extract_automated_fixes(analysis), 'manual_actions': self._extract_manual_actions(analysis), 'prevention_measures': self._extract_prevention_measures(analysis) }
def predict_system_anomalies(self, metrics_df: pd.DataFrame) -> list: """Predict potential system anomalies using ML"""
# Feature engineering features = self._engineer_features(metrics_df)
# Detect anomalies anomalies = self.anomaly_detector.fit_predict(features)
# Get anomalous points anomaly_indices = np.where(anomalies == -1)[0]
predictions = [] for idx in anomaly_indices: timestamp = metrics_df.iloc[idx]['timestamp'] metrics = metrics_df.iloc[idx].to_dict()
prediction = { 'timestamp': timestamp, 'metrics': metrics, 'severity': self._calculate_severity(metrics), 'recommended_action': self._recommend_action(metrics) } predictions.append(prediction)
return predictions
def optimize_resource_allocation(self, usage_patterns: dict) -> dict: """AI-driven resource optimization recommendations"""
prompt = f""" Based on the following usage patterns, provide resource optimization recommendations:
Current Configuration: - Instances: {usage_patterns['instances']} - CPU allocation: {usage_patterns['cpu_allocation']} - Memory allocation: {usage_patterns['memory_allocation']}
Usage Patterns (last 30 days): - Average CPU usage: {usage_patterns['avg_cpu']}% - Peak CPU usage: {usage_patterns['peak_cpu']}% - Average Memory usage: {usage_patterns['avg_memory']}% - Peak Memory usage: {usage_patterns['peak_memory']}% - Traffic patterns: {usage_patterns['traffic_pattern']}
Provide specific recommendations for: 1. Right-sizing instances 2. Auto-scaling policies 3. Cost optimization 4. Performance improvement """
response = self.openai_client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are a cloud resource optimization expert."}, {"role": "user", "content": prompt} ], temperature=0.5 )
recommendations = response.choices[0].message.content
return { 'recommendations': recommendations, 'estimated_savings': self._calculate_savings(usage_patterns, recommendations), 'implementation_plan': self._generate_implementation_plan(recommendations) }
Predictive Incident Management
class PredictiveIncidentManager: def __init__(self): self.time_series_model = Prophet() self.incident_classifier = RandomForestClassifier()
def predict_incidents(self, historical_data: pd.DataFrame) -> list: """Predict potential incidents before they occur"""
predictions = []
# Analyze each metric for metric in ['cpu', 'memory', 'disk_io', 'network_latency']: # Prepare data for Prophet metric_data = historical_data[['timestamp', metric]].rename( columns={'timestamp': 'ds', metric: 'y'} )
# Fit model self.time_series_model.fit(metric_data)
# Make predictions future = self.time_series_model.make_future_dataframe(periods=24, freq='H') forecast = self.time_series_model.predict(future)
# Check for anomalies in forecast anomalies = self._detect_forecast_anomalies(forecast)
for anomaly in anomalies: incident_probability = self._calculate_incident_probability( metric, anomaly, historical_data )
if incident_probability > 0.7: predictions.append({ 'metric': metric, 'predicted_time': anomaly['ds'], 'predicted_value': anomaly['yhat'], 'incident_probability': incident_probability, 'recommended_action': self._get_preventive_action(metric, anomaly) })
return sorted(predictions, key=lambda x: x['incident_probability'], reverse=True)
def auto_remediate(self, incident_prediction: dict) -> dict: """Automatically remediate predicted incidents"""
remediation_actions = { 'cpu': self._remediate_cpu_issue, 'memory': self._remediate_memory_issue, 'disk_io': self._remediate_disk_issue, 'network_latency': self._remediate_network_issue }
action_func = remediation_actions.get(incident_prediction['metric']) if action_func: result = action_func(incident_prediction)
# Log remediation self._log_remediation(incident_prediction, result)
# Update ML model with outcome self._update_model_with_outcome(incident_prediction, result)
return result
return {'status': 'no_action_available'}
GitOps 2.0: Advanced Patterns
Progressive Delivery with Flagger
apiVersion: flagger.app/v1beta1kind: Canarymetadata: name: api-service namespace: productionspec: targetRef: apiVersion: apps/v1 kind: Deployment name: api-service
progressDeadlineSeconds: 300
service: port: 80 targetPort: 8080 gateways: - public-gateway.istio-system.svc.cluster.local hosts: - api.company.com
analysis: interval: 30s threshold: 5 maxWeight: 50 stepWeight: 10
metrics: - name: request-success-rate thresholdRange: min: 99 interval: 1m
- name: request-duration thresholdRange: max: 500 interval: 30s
- name: custom-business-metric templateRef: name: business-metrics namespace: flagger-system thresholdRange: min: 95
webhooks: - name: load-test url: http://loadtester.flagger/ timeout: 5s metadata: cmd: "hey -z 1m -q 10 -c 2 http://api-canary.production:80/"
- name: acceptance-test type: pre-rollout url: http://acceptance-test.production/ timeout: 30s
- name: notification type: post-rollout url: http://notification-service.production/ metadata: severity: info
Multi-Environment GitOps
class GitOpsController: def __init__(self): self.git_client = GitClient() self.k8s_client = K8sClient() self.policy_engine = PolicyEngine()
async def sync_environments(self): """Sync all environments with Git state""" environments = ['dev', 'staging', 'prod']
for env in environments: # Get desired state from Git desired_state = await self.git_client.get_environment_state(env)
# Get current state from cluster current_state = await self.k8s_client.get_cluster_state(env)
# Calculate diff diff = self.calculate_diff(current_state, desired_state)
# Apply policies approved_changes = await self.policy_engine.evaluate(diff, env)
# Apply changes progressively if approved_changes: await self.apply_changes_progressively(env, approved_changes)
async def apply_changes_progressively(self, env: str, changes: list): """Apply changes with progressive rollout"""
for change in changes: # Create canary deployment canary = await self.create_canary_deployment(change)
# Monitor canary metrics = await self.monitor_canary(canary, duration=300)
if self.is_canary_healthy(metrics): # Gradually increase traffic for weight in [10, 25, 50, 75, 100]: await self.update_traffic_split(canary, weight) await asyncio.sleep(60)
if not await self.is_healthy(canary): await self.rollback(canary) raise Exception(f"Canary failed at {weight}% traffic")
# Promote canary await self.promote_canary(canary) else: await self.rollback(canary) raise Exception("Canary failed health checks")
def generate_drift_report(self) -> dict: """Generate comprehensive drift report""" report = { 'timestamp': datetime.now().isoformat(), 'environments': {} }
for env in ['dev', 'staging', 'prod']: git_state = self.git_client.get_environment_state(env) cluster_state = self.k8s_client.get_cluster_state(env)
drift = self.calculate_drift(git_state, cluster_state)
report['environments'][env] = { 'total_resources': len(cluster_state), 'drifted_resources': len(drift), 'drift_percentage': (len(drift) / len(cluster_state)) * 100, 'details': drift }
return report
Observability 3.0: Beyond Metrics
Distributed Tracing with Context
package observability
import ( "context" "github.com/opentracing/opentracing-go" "github.com/uber/jaeger-client-go")
type EnhancedTracer struct { tracer opentracing.Tracer aiAnalyzer *AIAnalyzer}
func (et *EnhancedTracer) StartSpanWithContext(ctx context.Context, operationName string) (opentracing.Span, context.Context) { // Extract business context businessContext := extractBusinessContext(ctx)
// Start span with enhanced tags span, ctx := opentracing.StartSpanFromContext(ctx, operationName)
// Add standard tags span.SetTag("service.version", getServiceVersion()) span.SetTag("deployment.id", getDeploymentID()) span.SetTag("feature.flags", getActiveFeatureFlags())
// Add business context span.SetTag("user.segment", businessContext.UserSegment) span.SetTag("transaction.value", businessContext.TransactionValue) span.SetTag("business.flow", businessContext.FlowType)
// Add AI insights if prediction := et.aiAnalyzer.PredictSpanBehavior(operationName); prediction != nil { span.SetTag("ai.expected_duration_ms", prediction.ExpectedDuration) span.SetTag("ai.anomaly_probability", prediction.AnomalyProbability) span.SetTag("ai.suggested_optimization", prediction.Optimization) }
return span, ctx}
func (et *EnhancedTracer) AnalyzeTracePatterns() []TraceInsight { // Get recent traces traces := et.getRecentTraces(1000)
insights := []TraceInsight{}
// Analyze performance patterns perfPatterns := et.analyzePerformancePatterns(traces) insights = append(insights, perfPatterns...)
// Detect anomalous traces anomalies := et.detectAnomalousTraces(traces) insights = append(insights, anomalies...)
// Find optimization opportunities optimizations := et.findOptimizationOpportunities(traces) insights = append(insights, optimizations...)
return insights}
type TraceInsight struct { Type string Severity string Description string Impact Impact Suggestion string AutoFix *AutoFix}
Intelligent Log Analysis
class IntelligentLogAnalyzer: def __init__(self): self.pattern_matcher = PatternMatcher() self.anomaly_detector = AnomalyDetector() self.root_cause_analyzer = RootCauseAnalyzer()
def analyze_logs_realtime(self, log_stream): """Real-time log analysis with ML"""
buffer = [] patterns_detected = defaultdict(int)
for log_entry in log_stream: # Parse and enrich log enriched_log = self.enrich_log(log_entry) buffer.append(enriched_log)
# Detect patterns patterns = self.pattern_matcher.match(enriched_log) for pattern in patterns: patterns_detected[pattern] += 1
# Check if pattern indicates issue if self.is_critical_pattern(pattern): self.handle_critical_pattern(pattern, enriched_log)
# Anomaly detection on sliding window if len(buffer) >= 1000: anomalies = self.anomaly_detector.detect(buffer[-1000:]) if anomalies: self.investigate_anomalies(anomalies)
# Clear old entries buffer = buffer[-1000:]
# Correlation analysis if patterns_detected: correlations = self.find_correlations(patterns_detected) if correlations: self.alert_on_correlations(correlations)
def perform_root_cause_analysis(self, incident_id: str) -> dict: """AI-powered root cause analysis"""
# Collect relevant logs logs = self.collect_incident_logs(incident_id)
# Collect metrics metrics = self.collect_incident_metrics(incident_id)
# Collect traces traces = self.collect_incident_traces(incident_id)
# Perform analysis analysis = self.root_cause_analyzer.analyze( logs=logs, metrics=metrics, traces=traces )
return { 'incident_id': incident_id, 'root_causes': analysis.root_causes, 'contributing_factors': analysis.contributing_factors, 'timeline': analysis.timeline, 'recommendations': analysis.recommendations, 'similar_incidents': self.find_similar_incidents(analysis) }
Security-First DevOps
DevSecOps Pipeline
name: DevSecOps Pipeline
on: push: branches: [main, develop] pull_request: branches: [main]
jobs: security-scanning: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3
- name: Secret Scanning uses: trufflesecurity/trufflehog@main with: path: ./ base: ${{ github.event.repository.default_branch }} head: HEAD
- name: SAST Scan uses: github/super-linter@v4 env: DEFAULT_BRANCH: main GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} VALIDATE_ALL_CODEBASE: false
- name: Dependency Scan run: | pip install safety safety check --json > safety-report.json
npm audit --json > npm-audit.json
go install github.com/sonatype-nexus-community/nancy@latest go list -json -m all | nancy sleuth
- name: Container Scan uses: aquasecurity/trivy-action@master with: image-ref: ${{ env.IMAGE_NAME }}:${{ github.sha }} format: "sarif" output: "trivy-results.sarif" severity: "CRITICAL,HIGH"
- name: IaC Scan uses: bridgecrewio/checkov-action@master with: directory: . framework: all output_format: sarif output_file_path: checkov.sarif
- name: License Compliance run: | pip install licensecheck licensecheck --zero --report license-report.json
- name: DAST Preparation if: github.ref == 'refs/heads/main' run: | echo "::set-output name=deploy_url::$(terraform output -raw app_url)"
compliance-validation: needs: security-scanning runs-on: ubuntu-latest steps: - name: Policy Validation run: | opa test policies/ conftest verify --policy policies/ .
- name: Compliance Check run: | # SOC2 compliance python scripts/check_soc2_compliance.py
# GDPR compliance python scripts/check_gdpr_compliance.py
# Industry-specific compliance python scripts/check_industry_compliance.py
Runtime Security
class RuntimeSecurityMonitor: def __init__(self): self.falco_client = FalcoClient() self.ebpf_monitor = eBPFMonitor() self.ml_detector = MLAnomalyDetector()
async def monitor_runtime_security(self): """Continuous runtime security monitoring"""
# Start eBPF monitoring self.ebpf_monitor.start_monitoring([ 'process_execution', 'network_connections', 'file_access', 'system_calls' ])
# Process security events async for event in self.get_security_events(): # Enrich event with context enriched_event = await self.enrich_security_event(event)
# ML-based anomaly detection anomaly_score = self.ml_detector.calculate_anomaly_score(enriched_event)
if anomaly_score > 0.8: # High-risk event await self.handle_security_incident(enriched_event) elif anomaly_score > 0.6: # Medium-risk event await self.investigate_event(enriched_event)
# Update ML model self.ml_detector.update_model(enriched_event)
async def handle_security_incident(self, event: SecurityEvent): """Automated security incident response"""
# Immediate containment if event.severity == 'CRITICAL': await self.contain_threat(event)
# Collect forensics forensics = await self.collect_forensics(event)
# Automated response response_plan = self.generate_response_plan(event, forensics) await self.execute_response_plan(response_plan)
# Update security policies policy_updates = self.generate_policy_updates(event) await self.apply_policy_updates(policy_updates)
# Alert security team await self.alert_security_team(event, forensics, response_plan)
Cost Optimization Through FinOps
Automated Cost Management
class FinOpsAutomation: def __init__(self): self.cloud_providers = { 'aws': AWSCostManager(), 'azure': AzureCostManager(), 'gcp': GCPCostManager() } self.optimizer = CostOptimizer()
def analyze_and_optimize_costs(self) -> dict: """Comprehensive cost analysis and optimization"""
total_savings = 0 optimizations = []
for cloud, manager in self.cloud_providers.items(): # Get current costs current_costs = manager.get_current_costs()
# Analyze usage patterns usage_analysis = manager.analyze_usage_patterns()
# Find optimization opportunities opportunities = self.optimizer.find_opportunities( current_costs, usage_analysis )
for opportunity in opportunities: if opportunity.confidence > 0.8: # Auto-apply optimization result = self.apply_optimization(cloud, opportunity) total_savings += result.estimated_savings optimizations.append(result) else: # Queue for review self.queue_for_review(opportunity)
return { 'total_monthly_savings': total_savings, 'optimizations_applied': len(optimizations), 'details': optimizations }
def apply_optimization(self, cloud: str, opportunity: Optimization) -> OptimizationResult: """Apply cost optimization automatically"""
manager = self.cloud_providers[cloud]
if opportunity.type == 'rightsizing': return manager.rightsize_resources(opportunity.resources) elif opportunity.type == 'reserved_instances': return manager.purchase_reserved_instances(opportunity.recommendations) elif opportunity.type == 'spot_instances': return manager.migrate_to_spot(opportunity.workloads) elif opportunity.type == 'unused_resources': return manager.cleanup_unused_resources(opportunity.resources) elif opportunity.type == 'scheduling': return manager.implement_scheduling(opportunity.schedule)
Developer Experience (DX) Excellence
Self-Service Development Environment
export class DevelopmentEnvironmentService { async createEphemeralEnvironment( request: EnvironmentRequest ): Promise<Environment> { // Create isolated namespace const namespace = await this.k8sClient.createNamespace({ name: `dev-${request.user}-${generateId()}`, labels: { owner: request.user, type: "ephemeral", expires: new Date(Date.now() + request.duration).toISOString(), }, });
// Deploy application stack const deployment = await this.deployApplicationStack({ namespace: namespace.name, version: request.version || "latest", configuration: request.configuration, dependencies: await this.resolveDependencies(request.dependencies), });
// Setup networking const ingress = await this.createIngress({ namespace: namespace.name, host: `${request.user}-${generateId()}.dev.company.com`, tls: true, });
// Seed test data if (request.seedData) { await this.seedTestData(namespace.name, request.seedData); }
// Configure IDE integration const ideConfig = await this.configureIDEIntegration({ environment: namespace.name, user: request.user, ide: request.ide || "vscode", });
return { id: namespace.name, url: `https://${ingress.host}`, services: deployment.services, credentials: await this.generateCredentials(namespace.name), ideConfig: ideConfig, expiresAt: namespace.labels.expires, }; }
async setupDevContainer(spec: DevContainerSpec): Promise<DevContainer> { const config = { name: spec.name, image: spec.baseImage || "mcr.microsoft.com/devcontainers/universal:2", features: { "ghcr.io/devcontainers/features/common-utils:2": {}, "ghcr.io/devcontainers/features/docker-in-docker:2": {}, ...spec.additionalFeatures, }, customizations: { vscode: { extensions: [ "github.copilot", "ms-azuretools.vscode-docker", "hashicorp.terraform", ...spec.vscodeExtensions, ], settings: { "terminal.integrated.defaultProfile.linux": "zsh", "files.autoSave": "afterDelay", ...spec.vscodeSettings, }, }, }, postCreateCommand: spec.postCreateCommand || 'echo "Environment ready!"', mounts: [ "source=/var/run/docker.sock,target=/var/run/docker.sock,type=bind", ], };
return await this.createDevContainer(config); }}
Chaos Engineering Evolution
Intelligent Chaos Engineering
class IntelligentChaosEngine: def __init__(self): self.ml_predictor = ChaosImpactPredictor() self.experiment_planner = ExperimentPlanner() self.safety_controller = SafetyController()
def plan_chaos_experiments(self, system_state: SystemState) -> List[ChaosExperiment]: """AI-driven chaos experiment planning"""
# Analyze system weaknesses weaknesses = self.analyze_system_weaknesses(system_state)
# Generate experiment candidates candidates = [] for weakness in weaknesses: experiment = self.experiment_planner.create_experiment( target=weakness.component, fault_type=weakness.fault_type, blast_radius=self.calculate_safe_blast_radius(weakness) )
# Predict impact impact = self.ml_predictor.predict_impact(experiment, system_state)
if self.is_safe_to_run(impact): candidates.append(experiment)
# Prioritize experiments prioritized = self.prioritize_experiments(candidates)
return prioritized[:5] # Top 5 experiments
async def run_adaptive_chaos(self, experiment: ChaosExperiment): """Run chaos experiment with adaptive controls"""
# Start experiment experiment_id = await self.start_experiment(experiment)
# Monitor in real-time while await self.is_experiment_running(experiment_id): # Get current metrics metrics = await self.get_system_metrics()
# Check safety thresholds if self.safety_controller.is_unsafe(metrics): await self.abort_experiment(experiment_id) break
# Adapt experiment based on impact if self.should_increase_chaos(metrics): await self.increase_chaos_intensity(experiment_id) elif self.should_decrease_chaos(metrics): await self.decrease_chaos_intensity(experiment_id)
await asyncio.sleep(5)
# Collect results results = await self.collect_experiment_results(experiment_id)
# Update ML models self.ml_predictor.update_model(experiment, results)
return results
Best Practices Summary
1. Platform Engineering First
- Build internal developer platforms
- Focus on developer experience
- Provide self-service capabilities
2. AI-Augmented Operations
- Use AI for incident prediction
- Automate root cause analysis
- Implement intelligent automation
3. Security as Code
- Shift security left
- Automate security scanning
- Implement runtime protection
4. Advanced Observability
- Go beyond metrics
- Implement distributed tracing
- Use AI for log analysis
5. Cost Optimization
- Implement FinOps practices
- Automate cost management
- Continuous optimization
6. Chaos Engineering
- Test system resilience
- Use intelligent chaos
- Learn from failures
7. GitOps Everything
- Declarative infrastructure
- Automated reconciliation
- Progressive delivery
The Future of DevOps
As we look toward 2025 and beyond:
- Autonomous Systems: Self-healing, self-optimizing infrastructure
- AI-Native Operations: AI at the core of all operations
- Platform as Product: Treating platforms as products with dedicated teams
- Environmental Sustainability: Green DevOps practices
- Quantum-Ready Infrastructure: Preparing for quantum computing
Conclusion
DevOps excellence in 2025 requires embracing platform engineering, AI-powered automation, advanced security practices, and a relentless focus on developer experience. The organizations that master these practices will build more reliable, secure, and efficient systems while enabling their developers to deliver value faster than ever before.
Additional Resources
- Platform Engineering Maturity Model
- State of DevOps Report 2024
- CNCF Cloud Native Landscape
- DevOps Institute
- The Phoenix Project
Tomorrow, we’ll explore Modern Infrastructure as Code, from Terraform to Pulumi and beyond. See you then!